Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Regulation of cell migration by amphoterin.

Regulation of cell migration by amphoterin. Amphoterin, a major form of HMG (high mobility group) 1 proteins, is highly expressed in immature and malignant cells. A role in cell motility is suggested by the ability of amphoterin to promote neurite extension through RAGE (receptor of advanced glycation end products), an immunoglobulin superfamily member that communicates with the GTPases Cdc42 and Rac. We show here that cell contact with the laminin matrix induces accumulation of both amphoterin mRNA and protein close to the plasma membrane, which is accompanied by extracellular export of amphoterin. A role for amphoterin in extracellular matrix-dependent cell regulation is further suggested by the finding that specific decrease of amphoterin mRNA and protein, using antisense oligonucleotides transfected into cells, inhibits cell migration to laminin in a transfilter assay whereas the oligonucleotides in the culture medium have no effect. Moreover, affinity-purified anti-amphoterin antibodies inhibit cell migration to laminin, supporting an extracellular role for the endogenous amphoterin in cell motility. The finding that amphoterin expression is more pronounced in cells with a motile phenotype as compared to cells of dense cultures, is consistent with the results of the cell migration assays. Our results strongly suggest that amphoterin is a key player in the migration of immature and transformed cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cell Science Pubmed

Regulation of cell migration by amphoterin.

Journal of Cell Science , Volume 113 ( Pt 4): 10 – Apr 12, 2000

Regulation of cell migration by amphoterin.


Abstract

Amphoterin, a major form of HMG (high mobility group) 1 proteins, is highly expressed in immature and malignant cells. A role in cell motility is suggested by the ability of amphoterin to promote neurite extension through RAGE (receptor of advanced glycation end products), an immunoglobulin superfamily member that communicates with the GTPases Cdc42 and Rac. We show here that cell contact with the laminin matrix induces accumulation of both amphoterin mRNA and protein close to the plasma membrane, which is accompanied by extracellular export of amphoterin. A role for amphoterin in extracellular matrix-dependent cell regulation is further suggested by the finding that specific decrease of amphoterin mRNA and protein, using antisense oligonucleotides transfected into cells, inhibits cell migration to laminin in a transfilter assay whereas the oligonucleotides in the culture medium have no effect. Moreover, affinity-purified anti-amphoterin antibodies inhibit cell migration to laminin, supporting an extracellular role for the endogenous amphoterin in cell motility. The finding that amphoterin expression is more pronounced in cells with a motile phenotype as compared to cells of dense cultures, is consistent with the results of the cell migration assays. Our results strongly suggest that amphoterin is a key player in the migration of immature and transformed cells.

Loading next page...
 
/lp/pubmed/regulation-of-cell-migration-by-amphoterin-agh4KfjlLn

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0021-9533
DOI
10.1242/jcs.113.4.611
pmid
10652254

Abstract

Amphoterin, a major form of HMG (high mobility group) 1 proteins, is highly expressed in immature and malignant cells. A role in cell motility is suggested by the ability of amphoterin to promote neurite extension through RAGE (receptor of advanced glycation end products), an immunoglobulin superfamily member that communicates with the GTPases Cdc42 and Rac. We show here that cell contact with the laminin matrix induces accumulation of both amphoterin mRNA and protein close to the plasma membrane, which is accompanied by extracellular export of amphoterin. A role for amphoterin in extracellular matrix-dependent cell regulation is further suggested by the finding that specific decrease of amphoterin mRNA and protein, using antisense oligonucleotides transfected into cells, inhibits cell migration to laminin in a transfilter assay whereas the oligonucleotides in the culture medium have no effect. Moreover, affinity-purified anti-amphoterin antibodies inhibit cell migration to laminin, supporting an extracellular role for the endogenous amphoterin in cell motility. The finding that amphoterin expression is more pronounced in cells with a motile phenotype as compared to cells of dense cultures, is consistent with the results of the cell migration assays. Our results strongly suggest that amphoterin is a key player in the migration of immature and transformed cells.

Journal

Journal of Cell SciencePubmed

Published: Apr 12, 2000

There are no references for this article.