Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Assembly of Two Mesoporous Anionic Metal-Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation.

Assembly of Two Mesoporous Anionic Metal-Organic Frameworks for Fluorescent Sensing of Metal Ions... Anionic metal-organic frameworks (MOFs) have attracted increasing attention due to the enhanced electrostatic interactions between their anionic frameworks and counter-ionic guests. Owing to these special host-guest interactions, anionic MOFs are beginning to have a large impact in the field of absorption and separation of ionic molecules and selective sensing of metal ions. Herein, two mesoporous anionic metal-organic frameworks, namely, [(CH3)2NH2]6[In6(OX)6(TCA)4]·solvents (JOU-11) and [(CH3)2NH2]6[In6(OX)6(TCPA)4]·solvents (JOU-12) (H3TCA = tricarboxytriphenylamine; H3TCPA = tris((4-carboxyl)phenylduryl)amine; OX = oxalate), have been synthesized by using wheel-type [In6(OX)6(COO)12]6- as building blocks. Structural analyses show that JOU-11 and JOU-12 show isoreticular three-dimensional frameworks with pyr topology. Due to their anionic frameworks and tunable pore window sizes, both compounds can be exploited for absorbing and separating cationic organic dyes. In addition, JOU-11 can be developed as a fluorescence "turn-off" sensor for selectively sensing Fe3+, whereas JOU-12 can be used for fluorescence "turn-on" sensing of Cu2+ and Co2+ ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inorganic Chemistry Pubmed

Assembly of Two Mesoporous Anionic Metal-Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation.

Inorganic Chemistry , Volume 60 (1): 8 – Jan 4, 2021

Assembly of Two Mesoporous Anionic Metal-Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation.


Abstract

Anionic metal-organic frameworks (MOFs) have attracted increasing attention due to the enhanced electrostatic interactions between their anionic frameworks and counter-ionic guests. Owing to these special host-guest interactions, anionic MOFs are beginning to have a large impact in the field of absorption and separation of ionic molecules and selective sensing of metal ions. Herein, two mesoporous anionic metal-organic frameworks, namely, [(CH3)2NH2]6[In6(OX)6(TCA)4]·solvents (JOU-11) and [(CH3)2NH2]6[In6(OX)6(TCPA)4]·solvents (JOU-12) (H3TCA = tricarboxytriphenylamine; H3TCPA = tris((4-carboxyl)phenylduryl)amine; OX = oxalate), have been synthesized by using wheel-type [In6(OX)6(COO)12]6- as building blocks. Structural analyses show that JOU-11 and JOU-12 show isoreticular three-dimensional frameworks with pyr topology. Due to their anionic frameworks and tunable pore window sizes, both compounds can be exploited for absorbing and separating cationic organic dyes. In addition, JOU-11 can be developed as a fluorescence "turn-off" sensor for selectively sensing Fe3+, whereas JOU-12 can be used for fluorescence "turn-on" sensing of Cu2+ and Co2+ ions.

Loading next page...
 
/lp/pubmed/assembly-of-two-mesoporous-anionic-metal-organic-frameworks-for-ab6UiWDJrA

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0020-1669
eISSN
1520-510X
DOI
10.1021/acs.inorgchem.0c02760
pmid
33326743

Abstract

Anionic metal-organic frameworks (MOFs) have attracted increasing attention due to the enhanced electrostatic interactions between their anionic frameworks and counter-ionic guests. Owing to these special host-guest interactions, anionic MOFs are beginning to have a large impact in the field of absorption and separation of ionic molecules and selective sensing of metal ions. Herein, two mesoporous anionic metal-organic frameworks, namely, [(CH3)2NH2]6[In6(OX)6(TCA)4]·solvents (JOU-11) and [(CH3)2NH2]6[In6(OX)6(TCPA)4]·solvents (JOU-12) (H3TCA = tricarboxytriphenylamine; H3TCPA = tris((4-carboxyl)phenylduryl)amine; OX = oxalate), have been synthesized by using wheel-type [In6(OX)6(COO)12]6- as building blocks. Structural analyses show that JOU-11 and JOU-12 show isoreticular three-dimensional frameworks with pyr topology. Due to their anionic frameworks and tunable pore window sizes, both compounds can be exploited for absorbing and separating cationic organic dyes. In addition, JOU-11 can be developed as a fluorescence "turn-off" sensor for selectively sensing Fe3+, whereas JOU-12 can be used for fluorescence "turn-on" sensing of Cu2+ and Co2+ ions.

Journal

Inorganic ChemistryPubmed

Published: Jan 4, 2021

There are no references for this article.