Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Flexibility in consumption and production provided by distributed energy resources (DERs) is a key to the integration of renewable energy sources into the energy system. However, even for identical DERs, the flexibility can vary widely, based on local constraints and circumstances. Therefore, handcrafting models can be labor-intensive and automating the generation of models could help increasing the volume of controllable flexibility in smart grids. Depending on the underlying mechanism for controlling demand side flexibility, there are various ways how an automation can be achieved. In this paper, we discuss fundamental concepts relevant to the automated generation of models for demand side flexibility, give an overview of different approaches, and point out fundamental differences. The main focus lies on model generation by means of machine learning techniques.
ACM SIGBED Review – Association for Computing Machinery
Published: Dec 28, 2021
Keywords: automated model generation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.