Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Hedden, Y. Kamiya (1997)
GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation.Annual review of plant physiology and plant molecular biology, 48
D. Lester, J. Ross, P. Davies, J. Reid (1997)
Mendel's stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase.The Plant cell, 9
T. Lange (1997)
Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in E. coli.Plant Physiol., 94
O. Hasan, B.G. Ridoutt, J.J. Ross, N.W. Davies, J.B. Reid (1994)
Identification and quantification of endogenous gibberellins in apical buds and cambial region of Eucalyptus.Plant Physiol., 90
V.A. Smith, J. MacMillan (1986)
The partial purification and characterisation of gibberellin 2β‐hydroxylases from seeds of Pisum sativum.Nature, 167
J.L. Garcia‐Martinez, I. Lopez‐Diaz, M.J. Sanchez‐Beltran, A.L. Phillips, D.A. Ward, P. Gaskin, P. Hedden (1997)
Isolation and transcript analysis of gibberellin 20‐oxidase genes in pea and bean in relation to fruit development.Annu. Rev. Plant Physiol. Plant Mol. Biol., 33
S. Peck, H. Kende (1998)
A gene encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase produces two transcripts: elucidation of a conserved response.The Plant journal : for cell and molecular biology, 14 5
C.A. Beveridge, I.C. Murfet (1996)
The gigas mutant in pea is deficient in the floral stimulus.Plant Mol. Biol., 96
Alasdair MacKenzie-Hose, J. Ross, N. Davies, S. Swain (1998)
Expression of gibberellin mutations in fruits of Pisum sativum L.Planta, 204
J. Ross, J. Reid, S. Swain, Omar Hasan, A. Poole, P. Hedden, Christine Willis (1995)
Genetic regulation of gibberellin deactivation in PisumPlant Journal, 7
Yu-xian Zhu, P. Davies, A. Halinska (1991)
Metabolism of Gibberellin A12 and A12-Aldehyde in Developing Seeds of Pisum sativum L.Plant Physiology, 97
Lester, J. Ross, T. Ait-Ali, D. Martín, J. Reid (1996)
A gibberellin 20-oxidase cDNA (Accession no. U58830) from pea ( Pisum sativum L.) seed (PGR 96-050)Plant Physiology, 111
P. Hedden, W.M. Proebsting (1999)
Genetic analysis of gibberellin biosynthesis.Proc. Natl Acad. Sci. USA, 119
J. Ross, J. Reid, S. Swain (1993)
Control of Stem Elongation by Gibberellin A1: Evidence From Genetic Studies Including the Slender Mutant slnAustralian Journal of Plant Physiology, 20
A.G. Prescott (1993)
A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet).Sln. Aust. J. Plant Physiol., 44
C. Beveridge, I. Murfet (1996)
The gigas mutant in pea is deficient in the floral stimulusPhysiologia Plantarum, 96
P. Hedden, Y. Kamiya (1997)
Gibberellin biosynthesis: Enzymes, genes and their regulation.Plant Cell, 48
T. Lange (1997)
Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America, 94 12
C. Willis, P. Gaskin, J. Macmillan (1988)
[1β,2β,3β-3 H3]Gibberellin A20: Confirmation of structure by 3H NMR and by mass spectrometryPhytochemistry, 27
T.H.N. Ellis (1994)
Modern Methods of Plant AnalysisPhysiol. Plant., 16
A. Phillips, D. Ward, S. Uknes, N. Appleford, T. Lange, A. Huttly, P. Gaskin, J. Graebe, P. Hedden (1995)
Isolation and Expression of Three Gibberellin 20-Oxidase cDNA Clones from Arabidopsis, 108
David Martin, W. Proebsting, P. Hedden (1997)
Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins.Proceedings of the National Academy of Sciences of the United States of America, 94 16
A. Prescott (1993)
A Dilemma of Dioxygenases (or Where Biochemistry and Molecular Biology Fail to Meet)Journal of Experimental Botany, 44
W. Potts, J. Reid, I. Murfet (1985)
Internode length in Pisum. Gibberellins and the slender phenotypePhysiologia Plantarum, 63
Matthias Schmidt, J. Feierabend, Ya‐hsuan Hsu, K. To, Chih-Yuan Yang, Yen Lin, J. Shaw, T. Hage, C. Seither, D. Hildebrand, Jun-jun Liu, G. Podila, Frauke Hein, S. Overkamp, W. Barz, K. Nozue, J. Christie, T. Kiyosue, W. Briggs, M. Wada, R. Arredondo-peter, M. Ramírez, G. Sarath, R. Klucas, A. Casas-Mollano, L. Destéfano-Beltrán, G. Coleman, B. Zhu, Sanggyun Park, R. Thornburg, D. Blanchard, A. Esen, E. Or, J. Baybik, Y. Sacks, I. Vilozny, H. Hayashi, N. Hiraoka, Y. Ikeshiro, K. Yazaki, Shigeo Tanaka, T. Kushiro, M. Shibuya, Y. Ebizuka, F. Gubler, Zhongy Li, Sarah Fieg, J. Jacobsen, M. Morell, S. Kojima, S. Hanzawa, T. Hayakawa, M. Hayashi, T. Yamaya, B. Veau, A. Oudin, Martine Courtois, J. Chénieux, S. Hamdi, M. Rideau, M. Clastre, Wen-Joan Chiang, S. Chen, T. Thorbjørnsen, P. Villand, V. Ramstad, L. Kleczkowski, O. Olsen, H. Opsahl-Ferstad, James Anderson, D. Horvath (1995)
The electronic plant gene register.Plant physiology, 120 1
K. Valegård, A. Scheltinga, M. Lloyd, T. Hara, S. Ramaswamy, A. Perrakis, A. Thompson, Hwei-Jen Lee, J. Baldwin, C. Schofield, J. Hajdu, I. Andersson (1998)
Structure of a cephalosporin synthaseNature, 394
C.L. Willis, P. Gaskin, J. MacMillan (1988)
[1β, 2β, 3β‐3H3]Gibberellin A20: Confirmation of structure by 3H NMR and by MS., 27
H. Kende, J.A.D. Zeevaart (1997)
The five ‘classical’ plant hormones.Physiol. Plant., 9
D.N. Martin, W.M. Proebsting, T.D. Parks, W.G. Dougherty, T. Lange, M.J. Lewis, P. Gaskin, P. Hedden (1996)
Feed‐back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.Plant Physiol., 200
H. Kende, J. Zeevaart (1997)
The Five "Classical" Plant Hormones.The Plant cell, 9
T. Lange, C. Kegler, J.E. Graebe, P. Hedden, A.L. Phillips (1997)
Molecular characterisation of gibberellin 20‐oxidases. Structure‐function studies on recombinant enzymes and chimaeric proteins.Plant Cell, 100
T. Ellis (1994)
Approaches to the Genetic Mapping of Pea
D.R. Lester, J.J. Ross, P.J. Davies, J.B. Reid (1997)
. Mendel’s stem length gene (Le) encodes a gibberellin 3β‐hydroxylase.Proc. Natl Acad. Sci. USA, 9
S.C. Peck, H. Kende (1998)
A gene encoding 1‐aminocyclopropane‐1‐carboxylate (ACC) synthase produces two transcripts: elucidation of a conserved response.Physiol. Plant., 14
D.N. Martin, W.M. Proebsting, P. Hedden (1997)
Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins.Plant J., 94
O. Hasan, B. Ridoutt, J. Ross, N. Davies, J. Reid (1994)
Identification and quantification of endogenous gibberellins in apical buds and the cambial region of EucalyptusPhysiologia Plantarum, 90
V.M. Sponsel (1983)
The localisation, metabolism and biological activity of gibberellins in maturing and germinating seeds of Pisum sativum cv. Progress no. 9.Phytochemistry, 159
T. Thomas, A. Phillips, P. Hedden (1998)
RIKEN Symposium: Frontiers of Gibberellin ResearchPlant Physiol.
Peter Hedden, W. Proebsting (1999)
Genetic analysis of gibberellin biosynthesis.Plant physiology, 119 2
T. Lange, Carsten Kegler, P. Hedden, A. Phillips, J. Graebe (1997)
Molecular characterisation of gibberellin 20‐oxidases. Structure‐function studies on recombinant enzymes and chimaeric proteinsPhysiologia Plantarum, 100
J.B. Reid, J.J. Ross, S.M. Swain (1992)
Internode length in Pisum. A new, slender mutant with elevated levels of C19 gibberellins.Plant J., 188
F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl (1994)
Current Protocols in Molecular BiologyPhysiol. Plant., 1
D.R. Lester, J.J. Ross, T. Ait‐Ali, D.N. Martin, J.B. Reid (1996)
A gibberellin 20‐oxidase cDNA (accession no. U58830) from pea (Pisum sativum L.) seed ( PGR96–050).Planta, 111
Two cDNAs encoding gibberellin 2‐oxidases were isolated from maturing pea seeds. The first, PsGA2ox1, was isolated by activity screening of a Lambda‐ZAP cDNA library excised into phagemid form and expressed in Escherichia coli. The second, PsGA2ox2, was obtained initially as a PCR product using degenerate primers designed according to conserved regions of plant 2‐oxoglutarate‐dependent dioxygenases. E. coli heterologous expression products of PsGA2ox1 and PsGA2ox2 converted GA1 to GA8, as shown by HPLC‐radiocounting, and gas chromatography‐MS. PsGA2ox1 converted GA20 to GA29, but GA20 was a poor substrate for the PsGA2ox2 expression product. Furthermore, PsGA2ox1 converted GA29 to GA29‐catabolite at a low level of efficiency while PsGA2ox2 did not catalyse this step. A cDNA of PsGA2ox1 isolated from plants of genotype sln contained a single base deletion which was predicted to produce a truncated protein and gibberellin 2‐oxidase activity could not be demonstrated from this cDNA. A 10 bp size difference between the introns of the SLN and sln PsGA2ox1 genes was used to show co‐segregation between the SLN and sln phenotypes and the size of the PCR products. PsGA2ox1 transcripts were more abundant in cotyledons than in shoots, while the reverse was the case for PsGA2ox2. The expression patterns of the genes, together with the effects of the sln mutation, indicate that PsGA2ox1 plays a major role in GA20 deactivation in both shoots and maturing seeds, while the PsGA2ox2 gene might be important for GA1 deactivation in the shoot.
The Plant Journal – Wiley
Published: Jul 1, 1999
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.