Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Coggon (1971)
Electromagnetic and electrical modeling by the finite element methodGeophysics, 36
C. Brewitt-Taylor, J. Weaver (1976)
On the finite difference solution of two-dimensional induction problemsGeophysical Journal International, 47
R. Fletcher (1976)
Conjugate gradient methods for indefinite systems, 506
(1979)
Geosounding principles 1, Elsevier, Amsterdam. Li, Y. & Oldenburg, D.W., 1994. Inversion of 3-D DC resistivity data using an approximate inverse mappingGeophys. J. Int, 116
M. Hestenes, E. Stiefel (1952)
Methods of conjugate gradients for solving linear systemsJournal of research of the National Bureau of Standards, 49
T. Manteuffel (1977)
The Tchebychev iteration for nonsymmetric linear systemsNumerische Mathematik, 28
R. Freund (1994)
Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems
(1990)
citation_author=Telford W.M.; citation_author=Geldart L.P.; citation_author=Sheriff R.E.; citation_publisher=Cambridge University Press, Cambridge; Applied Geophysics
(1994)
The boundary integral calculation of the D.C. geoelectric field due to a point current source on the surface of 2-layered Earth with a 3-D outcropping perturbing bodyContr. Geophys. Inst. Slov. Acad. Sci, 25
P. Vinsome (1976)
Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations
C. Paige, M. Saunders (1982)
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least SquaresACM Trans. Math. Softw., 8
O. Axelsson (1980)
Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equationsLinear Algebra and its Applications, 29
A. Dey, H. Morrison (1979)
Resistivity modeling for arbitrarily shaped three-dimensional structuresGeophysics, 44
(1985)
The method of integral equation in the direct current resistivity method and its accuracyJ. Geophys, 56
P. Sonneveld (1989)
CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systemsSiam Journal on Scientific and Statistical Computing, 10
B. Wurmstich, F. Morgan (1994)
Modeling of streaming potential responses caused by oil well pumpingGeophysics, 59
Yaoguo Li, D. Oldenburg (1994)
Inversion of 3-D DC resistivity data using an approximate inverse mappingGeophysical Journal International, 116
R. Weiss, W. Schönauer (1991)
Data reduction (DARE) preconditioning for generalized conjugate gradient methods
H. Schwarz (1984)
Methode der finiten Elemente, 47
(1991)
citation_author=Schwarz H.R.; citation_publisher=Teubner, Stuttgart; Methode der finiten Elemente
J. Reid (1977)
Solution of linear systems of equations: Direct methods (general)
E. Mundry (1984)
GEOELECTRICAL MODEL CALCULATIONS FOR TWO‐DIMENSIONAL RESISTIVITY DISTRIBUTIONS*Geophysical Prospecting, 32
O. Widlund (1978)
A Lanczos Method for a Class of Nonsymmetric Systems of Linear EquationsSIAM Journal on Numerical Analysis, 15
(1995)
Three-dimensional resistivity forward modeling and inversion using conjugate gradients
(1972)
citation_author=Madden T.R.; citation_publisher=Dept. of Earth and Planetary Siences, MIT, Cambridge, MA; Transmission systems and network analogies to geophysical forward and inverse problems, Report 72–3
H. Scriba (1981)
COMPUTATION OF THE ELECTRIC POTENTIAL IN THREE‐DIMENSIONAL STRUCTURES*Geophysical Prospecting, 29
Y. Saad, M. Schultz (1986)
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systemsSiam Journal on Scientific and Statistical Computing, 7
O. Axelsson (1980)
A generalized conjugate direction method and its application on a singular perturbation problem
I. Mufti (1976)
FINITE‐DIFFERENCE RESISTIVITY MODELING FOR ARBITRARILY SHAPED TWO‐DIMENSIONAL STRUCTURESGeophysics, 41
H. Vorst (1981)
Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆Journal of Computational Physics, 44
D. Young, Kang Jea (1980)
Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methodsLinear Algebra and its Applications, 34
D. O’Leary (1980)
The block conjugate gradient algorithm and related methodsLinear Algebra and its Applications, 29
R. Schulz (1985)
Method of integral equation in the direct current resistivity method and its accuracy : J Geophys V56, N3, June 1985, P192–200International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22
T. Manteuffel (1978)
Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iterationNumerische Mathematik, 31
(1983)
Potentialberechnungen zur Interpretation von gleichstromgeoelektrischen Messungen über dreidimensionalen Störkörpern
Stephen Park, G. Van (1991)
Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodesGeophysics, 56
H. Elman, Y. Saad, P. Saylor (1986)
A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equationsSiam Journal on Scientific and Statistical Computing, 7
A. Dey, H. Morrison (1979)
Resistivity modelling for arbitrarily shaped two-dimensional structuresGeophysical Prospecting, 27
H. Vorst (1992)
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear SystemsSIAM J. Sci. Comput., 13
Summary An accurate and efficient 3-D finite-difference forward algorithm for DC resistivity modelling is developed. The governing differential equations of the resistivity problem are discretized using central finite differences that are derived by a second-order Taylor series expansion. Electrical conductivity values may be arbitrarily distributed within the half-space. Conductivities at the grid points are calculated by a volume-weighted arithmetic average from conductivities assigned to grid cells. Variable grid spacing is incorporated. The algorithm does not limit the number and configuration of the sources, although all illustrative examples are computed using two current electrodes at the surface. In general, the linear set of equations resulting from this kind of discretization is non-symmetric and requires generalized numerical equation solvers. However, after symmetrizing the matrix equations, the ordinary conjugate gradient method becomes applicable. It takes advantage of the matrix symmetry and, thus, is superior to the generalized methods. An efficient SSOR-preconditioner (SSOR symmetric successive overrelaxation) provides fast convergence by decreasing the spectral condition number of the matrix without using additional memory. Furthermore, a compact storage scheme reduces memory requirements and accelerates mathematical matrix operations. The performance of five different equation solvers is investigated in terms of cpu time. The preconditioned conjugate gradient method (CGPC) is shown to be the most efficient matrix solver and is able to solve large equation systems in moderate times (approximately 21/2 minutes on a DEC alpha workstation for a grid with 50 000 nodes, and 48 minutes for 200000 nodes). The importance of the tolerance value in the stopping criterion for the iteration process is pointed out. In order to investigate the accuracy, the numerical results are compared with analytical or other solutions for three different model classes, yielding maximum deviations of 3.5 per cent or much less for most of the computed values of the apparent resistivity. In conclusion, the presented algorithm provides a powerful and flexible tool for practical application in resistivity modelling. conjugate gradient methods, DC geoelectrics, finite differences, 3-D resistivity modelling References Axelsson O. , 1980 . Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , Lin. Algebra Appl ., 29 , 293 – 322 . Google Scholar Crossref Search ADS WorldCat Axelsson O. , 1980 . A generalized conjugate direction method and its application on a singular perturbation problem , Lecture Notes in Mathematics , 773 , 1 – 11 . OpenURL Placeholder Text WorldCat Brewitt-Taylor C.R. Weaver J.T. , 1976 . On the finite difference solution of two-dimensional induction problems , Geophys. J. R. astr. Soc ., 47 , 375 – 396 . Google Scholar Crossref Search ADS WorldCat Coggon J.H. , 1971 . Electromagnetic and electrical modeling by the Finite Element Method , Geophysics , 36 , 132 – 155 . Google Scholar Crossref Search ADS WorldCat Dey A. Morrison H.F. , 1979 . Resistivity modelling for arbitrarily shaped two-dimenional structures , Geophys. Prospect ., 27 , 106 – 136 . Google Scholar Crossref Search ADS WorldCat Dey A. Morrison H.F. , 1979 . Resistivity modelling for arbitrarily shaped three-dimensional structures , Geophysics , 44 , 753 – 780 . Google Scholar Crossref Search ADS WorldCat Elman H.C. Saad Y. Saylor P.E. , 1986 . A Hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations , SIAM J. Sci. Statist. Comput ., 7 , 840 – 855 . Google Scholar Crossref Search ADS WorldCat Fletcher R. , 1976 . Conjugate gradient methods for indefinite systems , Lecture Notes in Mathematics , 506 , 73 – 89 . OpenURL Placeholder Text WorldCat Freund R.W. , 1992 . Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems , AT&T Bell Laboratories Numerical Analysis Manuscripts , 92 – 07 . Hestenes M.R. Stiefel E. , 1952 . Method of conjugate gradients for solving linear systems , J. Res. Nat. Bur. Standards , 49 , 409 – 436 . Google Scholar Crossref Search ADS WorldCat Hvoidara M. , 1994 . The boundary integral calculation of the D.C. geoelectric field due to a point current source on the surface of 2-layered Earth with a 3-D outcropping perturbing body , Contr. Geophys. Inst. Slov. Acad. Sci ., 25 . OpenURL Placeholder Text WorldCat Koefoed O. , 1979 . Geosounding principles 1, Elsevier, Amsterdam. Li, Y. & Oldenburg, D.W., 1994. Inversion of 3-D DC resistivity data using an approximate inverse mapping , Geophys. J. Int ., 116 , 527 – 537 . OpenURL Placeholder Text WorldCat Madden T.R. , 1972 . Transmission systems and network analogies to geophysical forward and inverse problems, Report 72–3 , Dept. of Earth and Planetary Siences, MIT , Cambridge, MA . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Manteuffel T.A. , 1977 . The Tchebychev iteration for nonsymmetric linear systems , Numerische Mathematik ., 28 , 307 – 327 . Google Scholar Crossref Search ADS WorldCat Manteuffel T.A. , 1978 . Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , Numerische Mathematik , 31 , 183 – 208 . Google Scholar Crossref Search ADS WorldCat Mufti I.R. , 1976 . Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures , Geophysics , 41 , 62 – 78 . Google Scholar Crossref Search ADS WorldCat Mundry E. , 1984 . Geoelectrical model calculations for two-dimensional resistivity distributions , Geophys. Prospect ., 32 , 124 – 131 . Google Scholar Crossref Search ADS WorldCat O'Leary D.P. , 1980 . The block conjugate gradient algorithm and related methods , Lin. Algebra Appl ., 29 , 293 – 322 . Google Scholar Crossref Search ADS WorldCat Paige C.C. Saunders M.A. , 1982 . LSQR An algorithm for sparse linear equations and sparse least squares , ACM Trans. Math. Software , 8 , 43 – 71 . Google Scholar Crossref Search ADS WorldCat Park S.K. Van G.P. , 1991 . Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes , Geophysics , 56 , 951 – 960 . Google Scholar Crossref Search ADS WorldCat Reid J.K. , 1977 . Solution of linear systems of equations: direct methods (general) , Lecture Notes in Mathematics , 572 , 102 – 129 . OpenURL Placeholder Text WorldCat Saad Y. Schultz M.H. , 1986 . GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems , SIAM J. Sci. Statist. Comput ., 7 , 856 – 869 . Google Scholar Crossref Search ADS WorldCat Schulz R. , 1983 . Potentialberechnungen zur Interpretation von gleichstromgeoelektrischen Messungen über dreidimensionalen Störkörpern , PhD thesis , Mathematisch-naturwissenschaftliche Fakultät der Technischen Universität Clausthal , Germany . Schulz R. , 1985 . The method of integral equation in the direct current resistivity method and its accuracy , J. Geophys ., 56 , 192 – 200 . OpenURL Placeholder Text WorldCat Schwarz H.R. , 1991 . Methode der finiten Elemente , Teubner , Stuttgart . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Scriba H. , 1981 . Computation of the electric potential in three-dimensional structures , Geophys. Prospect ., 29 , 790 – 802 . Google Scholar Crossref Search ADS WorldCat Sonneveld P. , 1989 . CGS: a fast Lanczos-type solver for nonsymmetric linear systems , SIAM J. Sci. Statist. Comput ., 10 , 36 – 52 . Google Scholar Crossref Search ADS WorldCat Telford W.M. Geldart L.P. Sheriff R.E. , 1990 . Applied Geophysics , 2nd edn, Cambridge University Press , Cambridge . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Van der Vorst H.A. , 1981 . Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems , J. Comp. Phys ., 44 , 1 – 19 . Google Scholar Crossref Search ADS WorldCat Van der Vorst H.A. , 1992 . BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems , SIAM J. Sci. Stat. Comput ., 13 , 631 – 644 . Google Scholar Crossref Search ADS WorldCat Vinsome P.K.W. , 1976 . Orthomin, an iterative method for solving sparse sets of simultaneous linear equations , Soc. Petroleum Engin. of AIME, Paper SPE 5729 , 149 – 159 . OpenURL Placeholder Text WorldCat Weiss R. Schönauer W. , 1990 . Data reduction (DARE) preconditioning for generalized conjugate gradient methods , Lecture Notes in Mathematics , 1457 , 137 – 153 . OpenURL Placeholder Text WorldCat Widlund O. , 1978 . A Lanczos method for a class of nonsymmetric systems of linear equations , SIAM J. Numer. Anal ., 15 , 801 – 812 . Google Scholar Crossref Search ADS WorldCat Wurmstich B. Morgan F.D. , 1994 . Modeling of streaming potential responses caused by oil well pumping , Geophysics , 59 , 46 – 56 . Google Scholar Crossref Search ADS WorldCat Young D.M. Jea K.C. , 1980 . Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , Lin. Algebra Appl ., 34 , 159 – 194 . Google Scholar Crossref Search ADS WorldCat Zhang J. Mackie R.L. Madden T.R. , 1995 . Three-dimensional resistivity forward modeling and inversion using conjugate gradients , Geophysics (submitted). This content is only available as a PDF.
Geophysical Journal International – Oxford University Press
Published: Dec 1, 1995
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.