Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review).

Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic... Polymeric, nucleic acid drugs must be protected from endogenous nucleases and delivered to target cell nuclei in order to maximize their activity. Constructs expressing therapeutic genes, antisense oligonucleotides and ribozymes can be delivered into cells by viral vectors, but concerns over safety and clinical utility have led to research into the development of alternative, non-viral delivery systems. Antisense and ribozyme drug development has focused upon modifications to the natural oligonucleotide chemistry which make the molecules resistant to nuclease degradation. These novel oligonucleotides cannot be generated by transgenes and must be administered in similar fashion to conventional drugs. However, oligonucleotides cannot cross membranes by passive diffusion and intracellular delivery for these drugs is very inefficient. Here we review the recent advances in forming lipid-DNA particles designed to mimic viral delivery of DNA. Most evidence now supports the hypothesis that lipid-DNA drugs enter target cells by endocytosis and disrupt the endosomal membrane, releasing nucleic acid into the cytoplasm. The mechanisms of particle formation and endosome disruption are not well understood. Cationic lipids are employed to provide an electrostatic interaction between the lipid carrier and polyanionic nucleic acids, and they are critical for efficient packaging of the drugs into a form suitable for systemic administration. However, their role in endosome disruption and other aspects of successful delivery leading to gene expression or inhibition of mRNA translation are less clear. We discuss the propensity of lipid-nucleic acid particles to undergo lipid mixing and fusion with adjacent membranes, and how phosphatidylethanolamine and other lipids may act as factors capable of disrupting bilayer structure and the endosomal pathway. Finally, we consider the challenges that remain in bringing nucleic acid based drugs into the realm of clinical reality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular membrane biology Pubmed

Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review).

Molecular membrane biology , Volume 15 (1): 14 – Jul 23, 1998

Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review).


Abstract

Polymeric, nucleic acid drugs must be protected from endogenous nucleases and delivered to target cell nuclei in order to maximize their activity. Constructs expressing therapeutic genes, antisense oligonucleotides and ribozymes can be delivered into cells by viral vectors, but concerns over safety and clinical utility have led to research into the development of alternative, non-viral delivery systems. Antisense and ribozyme drug development has focused upon modifications to the natural oligonucleotide chemistry which make the molecules resistant to nuclease degradation. These novel oligonucleotides cannot be generated by transgenes and must be administered in similar fashion to conventional drugs. However, oligonucleotides cannot cross membranes by passive diffusion and intracellular delivery for these drugs is very inefficient. Here we review the recent advances in forming lipid-DNA particles designed to mimic viral delivery of DNA. Most evidence now supports the hypothesis that lipid-DNA drugs enter target cells by endocytosis and disrupt the endosomal membrane, releasing nucleic acid into the cytoplasm. The mechanisms of particle formation and endosome disruption are not well understood. Cationic lipids are employed to provide an electrostatic interaction between the lipid carrier and polyanionic nucleic acids, and they are critical for efficient packaging of the drugs into a form suitable for systemic administration. However, their role in endosome disruption and other aspects of successful delivery leading to gene expression or inhibition of mRNA translation are less clear. We discuss the propensity of lipid-nucleic acid particles to undergo lipid mixing and fusion with adjacent membranes, and how phosphatidylethanolamine and other lipids may act as factors capable of disrupting bilayer structure and the endosomal pathway. Finally, we consider the challenges that remain in bringing nucleic acid based drugs into the realm of clinical reality.

Loading next page...
 
/lp/pubmed/cationic-lipids-phosphatidylethanolamine-and-the-intracellular-ZielZh3PFR

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0968-7688
DOI
10.3109/09687689809027512
pmid
9595549

Abstract

Polymeric, nucleic acid drugs must be protected from endogenous nucleases and delivered to target cell nuclei in order to maximize their activity. Constructs expressing therapeutic genes, antisense oligonucleotides and ribozymes can be delivered into cells by viral vectors, but concerns over safety and clinical utility have led to research into the development of alternative, non-viral delivery systems. Antisense and ribozyme drug development has focused upon modifications to the natural oligonucleotide chemistry which make the molecules resistant to nuclease degradation. These novel oligonucleotides cannot be generated by transgenes and must be administered in similar fashion to conventional drugs. However, oligonucleotides cannot cross membranes by passive diffusion and intracellular delivery for these drugs is very inefficient. Here we review the recent advances in forming lipid-DNA particles designed to mimic viral delivery of DNA. Most evidence now supports the hypothesis that lipid-DNA drugs enter target cells by endocytosis and disrupt the endosomal membrane, releasing nucleic acid into the cytoplasm. The mechanisms of particle formation and endosome disruption are not well understood. Cationic lipids are employed to provide an electrostatic interaction between the lipid carrier and polyanionic nucleic acids, and they are critical for efficient packaging of the drugs into a form suitable for systemic administration. However, their role in endosome disruption and other aspects of successful delivery leading to gene expression or inhibition of mRNA translation are less clear. We discuss the propensity of lipid-nucleic acid particles to undergo lipid mixing and fusion with adjacent membranes, and how phosphatidylethanolamine and other lipids may act as factors capable of disrupting bilayer structure and the endosomal pathway. Finally, we consider the challenges that remain in bringing nucleic acid based drugs into the realm of clinical reality.

Journal

Molecular membrane biologyPubmed

Published: Jul 23, 1998

There are no references for this article.