Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Kirschvink (1992)
Late Proterozoic low-latitude global glaciation: the snowball Earth
N. Butterfield (2000)
Ecology and evolution of the Cambrian plankton
S. Bowring, J. Grotzinger, C. Isachsen, Andrew Knoll, S. Pelechaty, Peter Kolosov (1993)
Calibrating rates of early Cambrian evolution.Science, 261
R. Solé, P. Fernández, S. Kauffman (2003)
Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion.The International journal of developmental biology, 47 7-8
B. Runnegar (1982)
A molecular‐clock date for the origin of the animal phylaLethaia, 15
E. Davidson, K. Peterson, R. Cameron (1995)
Origin of Bilaterian Body Plans: Evolution of Developmental Regulatory MechanismsScience, 270
D. Jacobs, N. Hughes, S. Fitz-Gibbon, C. Winchell (2005)
Terminal addition, the Cambrian radiation and the Phanerozoic evolution of bilaterian formEvolution & Development, 7
J. Valentine, S. Awramik, P. Signor, P. Sadler (1991)
The biological explosion at the precambrian-cambrian boundaryEvolutionary Biology-new York, 25
S. Jacobsen, G. Roe (2006)
THE EARLY HISTORY OF ATMOSPHERIC OXYGEN : Homage to
A. Knoll, S. Carroll (1999)
Early animal evolution: emerging views from comparative biology and geology.Science, 284 5423
Y. Tatsumi (2006)
HIGH-MG ANDESITES IN THE SETOUCHI VOLCANIC BELT, SOUTHWESTERN JAPAN: Analogy to Archean Magmatism and Continental Crust Formation?Annual Review of Earth and Planetary Sciences, 34
D. Briggs, D. Erwin, Frederick Collier (1994)
The Fossils of the Burgess Shale
J. Valentine (1980)
Determinants of diversity in higher taxonomic categoriesPaleobiology, 6
C. Marshall (2003)
Nomothetism and Understanding the Cambrian “Explosion”, 18
B. Webby, F. Paris, M. Droser, I. Percival (2004)
The Great Ordovician Biodiversification Event
J. Alroy (1999)
The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation.Systematic biology, 48 1
K. Peterson, Jessica Lyons, Kristin Nowak, Carter Takacs, M. Wargo, M. McPeek (2004)
Estimating metazoan divergence times with a molecular clock.Proceedings of the National Academy of Sciences of the United States of America, 101 17
K. Niklas (2004)
COMPUTER MODELS OF EARLY LAND PLANT EVOLUTIONAnnual Review of Earth and Planetary Sciences, 32
J. Valentine (2002)
PRELUDE TO THE CAMBRIAN EXPLOSIONAnnual Review of Earth and Planetary Sciences, 30
B. Marcotte (1999)
Turbidity, arthropods and the evolution of perception: toward a new paradigm of marine phanerozoic diversityMarine Ecology Progress Series, 191
J. Grotzinger, S. Bowring, B. Saylor, A. Kaufman (1995)
Biostratigraphic and Geochronologic Constraints on Early Animal EvolutionScience, 270
N. Hughes, R. Chapman, J. Adrain (1999)
The stability of thoracic segmentation in trilobites: a case study in developmental and ecological constraintsEvolution & Development, 1
N. Butterfield (1997)
Plankton ecology and the Proterozoic-Phanerozoic transitionPaleobiology, 23
D. Rothman, J. Hayes, R. Summons (2003)
Dynamics of the Neoproterozoic carbon cycleProceedings of the National Academy of Sciences of the United States of America, 100
www.annualreviews.org @BULLET Explaining the Cambrian
J. Valentine (2004)
On the Origin of Phyla
D. Canfield (2005)
THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. GarrelsAnnual Review of Earth and Planetary Sciences, 33
A. Berry, S. Morris (1998)
Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals.Evolution, 52
K. Halanych (2004)
The New View of Animal PhylogenyAnnual Review of Ecology, Evolution, and Systematics, 35
A. Maloof, D. Schrag, J. Crowley, S. Bowring (2005)
An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, MoroccoCanadian Journal of Earth Sciences, 42
S. Bengtson (2002)
Origins and Early Evolution of Predation, 8
Am. Assoc. Adv. Sci. Publ
M. Fedonkin, B. Waggoner (1997)
The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organismNature, 388
K. Niklas (1994)
Morphological evolution through complex domains of fitness.Proceedings of the National Academy of Sciences of the United States of America, 91 15
(2006)
An online log of corrections to Annual Review of Earth and Planetary Sciences chapters may be found at http://earth.annualreviews.org viii Contents Annu
G. Budd, S. Jensen (2007)
A critical reappraisal of the fossil record of the bilaterian phyla.Biological Reviews of The Cambridge Philosophical Society, 75
J. Valentine (2000)
Two genomic paths to the evolution of complexity in bodyplans, 26
(2003)
Un fusible de méthane pour l'explosion cambrienne : les cycles du carbone et dérive des pôles
J. Valentine (1986)
Fossil Record of the Origin of Baupläne and Its Implications
G. Narbonne (2005)
THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their EcosystemsAnnual Review of Earth and Planetary Sciences, 33
B. Runnegar (1995)
Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna”Neues Jahrbuch Fur Geologie Und Palaontologie-abhandlungen, 195
S. Tavaré, C. Marshall, O. Will, C. Soligo, R. Martin (2002)
Using the fossil record to estimate the age of the last common ancestor of extant primatesNature, 416
(1961)
The biologist poses some problems
J. Amthor, J. Grotzinger, S. Schröder, S. Bowring, J. Ramezani, Mark Martin, A. Matter (2003)
Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in OmanGeology, 31
(2001)
From DNA to Diversity
J. Valentine (1995)
WHY NO NEW PHYLA AFTER THE CAMBRIAN? GENOME AND ECOSPACE HYPOTHESES REVISITEDPALAIOS, 10
A. Seilacher (1992)
Vendobionta and Psammocorallia: lost constructions of Precambrian evolutionJournal of the Geological Society, 149
P. Hoffman, A. Kaufman, G. Halverson, D. Schrag (1998)
A neoproterozoic snowball earthScience, 281 5381
S. Morris, J. Peel (1995)
Articulated Halkieriids from the Lower Cambrian of North Greenland and their Role in Early Protostome EvolutionPhilosophical Transactions of the Royal Society B, 347
James Valentine, Timothy Walker (1986)
Diversity trends within a model taxonomic hierarchyPhysica D: Nonlinear Phenomena, 2
Hou Xian-guang, L. Ramsköld, J. Bergström (1991)
Composition and preservation of the Chengjiang fauna –a Lower Cambrian soft‐bodied biotaZoologica Scripta, 20
K. Peterson, M. McPeek, D. Evans (2005)
Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks, 31
M. Foote (2003)
Origination and Extinction through the Phanerozoic: A New ApproachThe Journal of Geology, 111
G. McGhee (1998)
Theoretical Morphology: The Concept and Its Applications
J. Grotzinger, W. Watters, A. Knoll (2000)
Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia, 26
S. Gould (1996)
The Shape of LifeArt Journal, 55
A. Collins, J. Lipps, J. Valentine (2000)
Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers, 26
A. Parker (1998)
Colour in Burgess Shale animals and the effect of light on evolution in the CambrianProceedings of the Royal Society of London. Series B: Biological Sciences, 265
P. Signor, G. Vermeij (1994)
The plankton and the benthos: origins and early history of an evolving relationshipPaleobiology, 20
S. Jensen, J. Gehling, M. Droser (1998)
Ediacara-type fossils in Cambrian sedimentsNature, 393
J. Kirschvink, T. Raub (2003)
A methane fuse for the Cambrian explosion: carbon cycles and true polar wanderComptes Rendus Geoscience, 335
Key paper in understanding the origins of disparity and diversity
A. Zhuravlev (2001)
Biota diversity and structure during the Neoproterozoic-Ordovician transition
E. Landing, S. Bowring, K. Davidek, S. Westrop, G. Geyer, Wolfram Heldmaier (1998)
Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and GondwanaCanadian Journal of Earth Sciences, 35
G. Vermeij (1989)
The origin of skeletonsPALAIOS, 4
I. Montañez, D. Osleger, J. Banner, L. Mack, M. Musgrove (2000)
Evolution of the Sr and C Isotope Composition of Cambrian OceansGsa Today, 10
N. Barton (2004)
Fitness Landscapes and the Origin of Species
N. Shubin, C. Marshall (2000)
Fossils, genes, and the origin of novelty, 26
G. Vermeij (1987)
Evolution and Escalation: An Ecological History of Life
E. Davidson (2005)
Genomic Regulatory Systems: Development and Evolution
K. Peterson, E. Davidson (2000)
Regulatory evolution and the origin of the bilaterians.Proceedings of the National Academy of Sciences of the United States of America, 97 9
L. Buss, A. Seilacher (1994)
The Phylum Vendobionta: a sister group of the Eumetazoa?Paleobiology, 20
M. Droser, S. Jensen, J. Gehling (2002)
Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixingProceedings of the National Academy of Sciences of the United States of America, 99
W. Wimsatt (1986)
Developmental Constraints, Generative Entrenchment, and the Innate-Acquired Distinction
J. Gehling, S. Jensen, M. Droser, P. Myrow, G. Narbonne (2001)
Burrowing below the basal Cambrian GSSP, Fortune Head, NewfoundlandGeological Magazine, 138
W. Harland (1982)
A Geologic time scale
T. Ray (2006)
Life's Solution: Inevitable Humans in a Lonely UniverseArtificial Life, 12
Artem Kouchinsky, A. Zhuravlev, R. Riding (2000)
15. Mollusks, Hyoliths, Stenothecoids, and Coeloscleritophorans
H. Hua, Zhe Chen, Xunlai Yuan, Lu-yi Zhang, S. Xiao (2005)
Skeletogenesis and asexual reproduction in the earliest biomineralizing animal CloudinaGeology, 33
J. Gehling (1987)
Earliest known echinoderm — a new Ediacaran fossil from the Pound Subgroup of South AustraliaAlcheringa, 11
M. Droser, J. Gehling, S. Jensen (1999)
When the worm turned: Concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South AustraliaGeology, 27
(2006)
Annu. Rev. Earth. Planet. Sci
A. Seilacher (1989)
Vendozoa: Organismic construction in the Proterozoic biosphereLethaia, 22
J. Geol
J. Sepkoski (2002)
A compendium of fossil marine animal genera
F. Gradstein, J. Ogg, Alan Smith (2004)
A Geologic Time Scale 2004: CONCEPTS AND METHODS
M. Csete, J. Doyle (2002)
Reverse Engineering of Biological ComplexityScience, 295
S. Morris (1992)
Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a reviewJournal of the Geological Society, 149
R. Lewin (1988)
A Lopsided Look at Evolution: An analysis of the fossil record reveals some unexpected patterns in the origin of major evolutionary innovations, patterns that presumably reflect the operation of different mechanisms.Science, 241 4863
K. Towe (1970)
Oxygen-collagen priority and the early metazoan fossil record.Proceedings of the National Academy of Sciences of the United States of America, 65 4
M. Laubichler (2003)
Review of: Carroll, Sean B., Jennifer K. Grenier and Scott D. Weatherbee: From DNA to diversity : molecular genetics and the evolution of animal design. Malden, Mass [u.a.]: Blackwell Science 2001Perspectives in Biology and Medicine
A. McEwen, E. Bierhaus (2006)
THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACESAnnual Review of Earth and Planetary Sciences, 34
J. Finnerty, K. Pang, Patrick Burton, David Paulson, M. Martindale (2004)
Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea AnemoneScience, 304
Grant Sw (1990)
Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic.American Journal of Science
(1995)
Darwinism in an age of molecular revolution In Evolution and the Molecular Revolution
(2006)
Downloaded from arjournals.annualreviews.org by 198.181.231.11 on 05/04/06. For personal use only
M. Averof, N. Patel (1997)
Crustacean appendage evolution associated with changes in Hox gene expressionNature, 388
J. Payne, D. Lehrmann, Jiayong Wei, M. Orchard, D. Schrag, A. Knoll (2004)
Large Perturbations of the Carbon Cycle During Recovery from the End-Permian ExtinctionScience, 305
S. Wright (1931)
Evolution in Mendelian Populations.Genetics, 16 2
A. Zhuravlev, R. Riding (2000)
The ecology of the Cambrian radiation
G. Wray, J. Levinton, L. Shapiro (1996)
Molecular Evidence for Deep Precambrian Divergences Among Metazoan PhylaScience, 274
(1998)
Determining stratigraphic ranges
D. Erwin, E. Davidson (2002)
The last common bilaterian ancestor.Development, 129 13
X. Hou, R. Aldridge, J. Bergström, D. Siveter, D. Siveter, Xiangqian Feng (2004)
The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life
G. Vermeij (2004)
Nature: An Economic History
K. Peterson, B. Waggoner, J. Hagadorn (2003)
A Fungal Analog for Newfoundland Ediacaran Fossils?1, 43
S. Stanley (1976)
Ideas on the timing of metazoan diversificationPaleobiology, 2
K. McNAMARA, M. McMenamin (1998)
The Garden of Ediacara: Discovering the First Complex LifeBioScience
D. Condon, Maoyan Zhu, S. Bowring, Wei Wang, A. Yang, Yu-gan Jin (2005)
U-Pb Ages from the Neoproterozoic Doushantuo Formation, ChinaScience, 308
H. Hua, B. Pratt, Lu-yi Zhang (2003)
Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic, 18
G. Retallack (1994)
Were the Ediacaran fossils lichens?Paleobiology, 20
H. Whittington (1985)
The Burgess Shale
J. Kirschvink, R. Ripperdan, D. Evans (1997)
Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar WanderScience, 277
S. Aris-Brosou, Ziheng Yang (2003)
Bayesian models of episodic evolution support a late precambrian explosive diversification of the Metazoa.Molecular biology and evolution, 20 12
K. Niklas (1997)
Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plantsPaleobiology, 23
S. Stanley (1973)
An ecological theory for the sudden origin of multicellular life in the late precambrian.Proceedings of the National Academy of Sciences of the United States of America, 70 5
S. Gould (1989)
Wonderful Life: The Burgess Shale and the Nature of History
Abstract The Cambrian “explosion” is a unique episode in Earth history, when essentially all the animal phyla first appear in the fossil record. A variety of environmental, developmental (genetic), and ecological explanations for this complex and somewhat protracted event are reviewed, with a focus on how well each explains the observed increases in disparity and diversity, the time of onset of the radiation, its duration, and its uniqueness. The increase in disparity (the origin of the phyla) and diversity are best understood as being the result of the interplay of the combinatorial bilaterian developmental system and the increase in the number of needs the first bilaterians had to meet as complex ecological interactions developed. The time of onset is constrained by the evolution of the environment, whereas its duration appears to be controlled primarily by rates of developmental innovation. The uniqueness of the event is either due to ensuing developmental limitation, to ecological saturation, or simply to the exhaustion of ecologically viable morphologies that could be produced by the nascent bilaterian developmental system.
Annual Review of Earth and Planetary Sciences – Annual Reviews
Published: May 30, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.