Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Kennedy, A. Hoke, Yu Zhu, J. Johnston, G. Marle, Cláudia Silva, D. Zochodne, C. Power (2004)
Peripheral neuropathy in lentivirus infection: evidence of inflammation and axonal injuryAIDS, 18
S. Letendre, R. Ellis, A. Mccutchan (2010)
Neurologic complications of HIV disease and their treatment.Topics in HIV medicine : a publication of the International AIDS Society, USA, 18 2
F. Noorbakhsh, C. Overall, C. Power (2009)
Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biologyTrends in Neurosciences, 32
M. Aksoy, Yi Yang, Rong Ji, P. Reddy, S. Shahabuddin, J. Litvin, T. Rogers, S. Kelsen (2006)
CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.American journal of physiology. Lung cellular and molecular physiology, 290 5
D. Klionsky, S. Emr (2000)
Autophagy as a regulated pathway of cellular degradation.Science, 290 5497
E. Feldman, D. Weinreich, N. Carroll, Monika Burness, A. Feldman, E. Turner, Hui Xu, H. Alexander (2006)
Interferon γ–Inducible Protein 10 Selectively Inhibits Proliferation and Induces Apoptosis in Endothelial CellsAnnals of Surgical Oncology, 13
J. Elder, M. Sundstrom, Sohela Rozìeres, A. Parseval, C. Grant, Y. Lin (2008)
Molecular mechanisms of FIV infection.Veterinary immunology and immunopathology, 123 1-2
M. Kaul, S. Lipton (2006)
Mechanisms of neuronal injury and death in HIV-1 associated dementia.Current HIV research, 4 3
J. Roth, C. McCully, F. Balis, D. Poplack, J. Kelley (1999)
2'-beta-fluoro-2',3'-dideoxyadenosine, lodenosine, in rhesus monkeys: plasma and cerebrospinal fluid pharmacokinetics and urinary disposition.Drug metabolism and disposition: the biological fate of chemicals, 27 10
J. Richardson, G. Pancino, Rastine Merat, T. Leste-Lasserre, A. Moraillon, J. Schneider-Mergener, M. Alizon, P. Sonigo, N. Heveker (1999)
Shared Usage of the Chemokine Receptor CXCR4 by Primary and Laboratory-Adapted Strains of Feline Immunodeficiency VirusJournal of Virology, 73
R. Koenig, T. Gautier, J. Levy (1986)
UNUSUAL INTRAFAMILIAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUSThe Lancet, 328
R. Price, S Spudich (2008)
Antiretroviral therapy and central nervous system HIV type 1 infection.The Journal of infectious diseases, 197 Suppl 3
M. Alirezaei, W. Kiosses, Claudia Flynn, N. Brady, H. Fox (2008)
Disruption of Neuronal Autophagy by Infected Microglia Results in NeurodegenerationPLoS ONE, 3
B. Levine, G. Kroemer (2008)
Autophagy in the Pathogenesis of DiseaseCell, 132
D. Vergote, G. Butler, M. Ooms, J. Cox, Cláudia Silva, M. Hollenberg, J. Jhamandas, C. Overall, C. Power (2006)
Proteolytic processing of SDF-1α reveals a change in receptor specificity mediating HIV-associated neurodegenerationProceedings of the National Academy of Sciences, 103
A. Antinori, C. Perno, M. Giancola, F. Forbici, G. Ippolito, R. Hoetelmans, S. Piscitelli (2005)
Efficacy of cerebrospinal fluid (CSF)-penetrating antiretroviral drugs against HIV in the neurological compartment: different patterns of phenotypic resistance in CSF and plasma.Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 41 12
I. Everall, R. Heaton, T. Marcotte, R. Ellis, McCutchan Ja, J. Atkinson, I. Grant, M. Mallory, E. Masliah (1999)
Cortical Synaptic Density is Reduced in Mild to Moderate Human Immunodeficiency Virus Neurocognitive DisorderBrain Pathology, 9
T. Müller, H. Meyer, R. Egensperger, K. Marcus (2008)
The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics—Relevance for Alzheimer's diseaseProgress in Neurobiology, 85
M. Komatsu, E. Kominami, Keiji Tanaka (2006)
Autophagy and NeurodegenerationAutophagy, 2
Y. Ohsumi (2001)
Ubiquitin and proteasomes: Molecular dissection of autophagy: two ubiquitin-like systemsNature Reviews Molecular Cell Biology, 2
J. Rumbaugh, A. Nath (2006)
Developments in HIV neuropathogenesis.Current pharmaceutical design, 12 9
S. Carloni, G. Buonocore, W. Balduini (2008)
Protective role of autophagy in neonatal hypoxia–ischemia induced brain injuryNeurobiology of Disease, 32
Gareth Jones, C. Power (2006)
Regulation of neural cell survival by HIV-1 infectionNeurobiology of Disease, 21
Guomei Tang, Zhenyu Yue, Z. Tallóczy, Tracy Hagemann, Woosung Cho, A. Messing, D. Sulzer, J. Goldman (2008)
Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways.Human molecular genetics, 17 11
R. Rock, P. Peterson (2006)
Microglia as a Pharmacological Target in Infectious and Inflammatory Diseases of the BrainJournal of Neuroimmune Pharmacology, 1
J. Johnston, Y. Jiang, G. Marle, M. Mayne, W. Ni, J. Holden, J. McArthur, C. Power (2000)
Lentivirus Infection in the Brain Induces Matrix Metalloproteinase Expression: Role of Envelope DiversityJournal of Virology, 74
H. Garg, F. Fuller, W. Tompkins (2004)
Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion.Virology, 321 2
Alexandre Garin, N. Tarantino, S. Faure, Mehdi Daoudi, C. Lécureuil, A. Bourdais, P. Debré, P. Deterre, C. Combadière (2003)
Two Novel Fully Functional Isoforms of CX3CR1 Are Potent HIV Coreceptors 1The Journal of Immunology, 171
E. Masliah, R. Ellis, M. Mallory, R. Heaton, T. Marcotte, J. Nelson, I. Grant, J. Atkinson, C. Wiley, C. Achim, J. McCutchan (1997)
Dendritic injury is a pathological substrate for human immunodeficiency virus—related cognitive disordersAnnals of Neurology, 42
Heather Wynn, R. Brundage, C. Fletcher (2002)
Clinical Implications of CNS Penetration of Antiretroviral DrugsCNS Drugs, 16
H. Yde (1964)
EXPLORATION OF INDEPENDENCE.Lancet, 2 7360
I. P. Everall, R. K. Heaton, T. D. Marcotte, R. J. Ellis, J. A. McCutchan, J. H. Atkinson, I. Grant, M. Mallory, E. Masliah (1999)
Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center, 9
L. Boissé, M. Gill, C. Power (2008)
HIV infection of the central nervous system: clinical features and neuropathogenesis.Neurologic clinics, 26 3
N. Sacktor (2002)
The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy.Journal of neurovirology, 8 Suppl 2
L. Ryan, Robin Cotter, W. Zink, H. Gendelman, Jialin Zheng (2002)
Macrophages, chemokines and neuronal injury in HIV-1-associated dementia.Cellular and molecular biology, 48 2
W. Fehder, S. Douglas (2001)
Interactions between the nervous and immune systems.Seminars in clinical neuropsychiatry, 6 4
I. Anthony, J. Bell (2008)
The Neuropathology of HIV/AIDSInternational Review of Psychiatry, 20
Angus Mcquibban, G. Butler, J. Gong, L. Bendall, C. Power, I. Clark‐Lewis, Christopher Overall (2001)
Matrix Metalloproteinase Activity Inactivates the CXC Chemokine Stromal Cell-derived Factor-1*The Journal of Biological Chemistry, 276
Dejiang Zhou, S. Spector (2008)
Human immunodeficiency virus type-1 infection inhibits autophagyAIDS, 22
F. Noorbakhsh, S. Tsutsui, N. Vergnolle, L. Boven, N. Shariat, Mohammed Vodjgani, K. Warren, P. Andrade‐Gordon, M. Hollenberg, C. Power (2006)
Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosisThe Journal of Experimental Medicine, 203
C. Hillaire, D. Vargas, C. Pardo, D. Gincel, J. Mann, J. Rothstein, J. McArthur, K. Conant (2005)
Aquaporin 4 is increased in association with human immunodeficiency virus dementia: Implications for disease pathogenesisJournal of NeuroVirology, 11
(2004)
Identification and Partial Characterization of a Variant of Human CXCR3 Generated by Posttranscriptional Exon Skipping
F. Noorbakhsh, N. Vergnolle, J. C. McArthur, C. Silva, M. Vodjgani, P. Andrade-Gordon, M. D. Hollenberg, C. Power (2005)
Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection, 174
C. Power, Kunyan Zhang, G. Marle (2011)
Comparative neurovirulence in lentiviral infections: The roles of viral molecular diversity and select proteasesJournal of NeuroVirology, 10
K. Hartmann, A. Donath, B. Beer, H. Egberink, Marian Horzinek, H. Lutz, G. Hoffmann-Fezer, I. Thum, S. Thefeld (1992)
Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms.Veterinary immunology and immunopathology, 35 1-2
M. Zink, Victoria Laast, K. Helke, Angela Brice, S. Barber, J. Clements, J. Mankowski (2006)
From mice to macaques--animal models of HIV nervous system disease.Current HIV research, 4 3
M. Bellizzi, Shao-ming Lu, H. Gelbard (2006)
Protecting the Synapse: Evidence for a Rational Strategy to Treat HIV-1 Associated Neurologic DiseaseJournal of Neuroimmune Pharmacology, 1
Kunyan Zhang, G. McQuibban, Cláudia Silva, G. Butler, J. Johnston, J. Holden, I. Clark‐Lewis, C. Overall, C. Power (2003)
HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegenerationNature Neuroscience, 6
E. Masliah, R. K. Heaton, T. D. Marcotte, R. J. Ellis, C. A. Wiley, M. Mallory, C. L. Achim, J. A. McCutchan, J. A. Nelson, J. H. Atkinson, I. Grant (1997)
Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center, 42
K. Conant, J. Mcarthur, D. Griffin, Lucas Sjulson, L. Wahl, D. Irani (1999)
Cerebrospinal fluid levels of MMP‐2, 7, and 9 are elevated in association with human immunodeficiency virus dementiaAnnals of Neurology, 46
Sovan Sarkar, D. Rubinsztein (2008)
Small molecule enhancers of autophagy for neurodegenerative diseases.Molecular bioSystems, 4 9
L. Boven, T. Bruggen, B. Asbeck, J. Marx, H. Nottet (1999)
Potential role of CCR5 polymorphism in the development of AIDS dementia complex.FEMS immunology and medical microbiology, 26 3-4
Shalley Gupta, K. Pillarisetti, P. Lysko (1999)
Modulation of CXCR4 expression and SDF‐1α functional activity during differentiation of human monocytes and macrophagesJournal of Leukocyte Biology, 66
Dun-Sheng Yang, Asok Kumar, Philip Stavrides, J. Peterson, Corrine Peterhoff, M. Pawlik, E. Levy, A. Cataldo, R. Nixon (2008)
Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease.The American journal of pathology, 173 3
C. Power, R. Buist, J. Johnston, M. Bigio, W. Ni, M. Dawood, J. Peeling (1998)
Neurovirulence in Feline Immunodeficiency Virus-Infected Neonatal Cats Is Viral Strain Specific and Dependent on Systemic Immune SuppressionJournal of Virology, 72
B. Levine, D. Klionsky (2004)
Development by self-digestion: molecular mechanisms and biological functions of autophagy.Developmental cell, 6 4
H. Adle-Biassette, F. Chrétien, L. Wingertsmann, C. Héry, T. Ereau, F. Scaravilli, M. Tardieu, F. Gray (1999)
Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damageNeuropathology and Applied Neurobiology, 25
I. Clark‐Lewis, L. Vo, P. Owen, J. Anderson (1997)
Chemical synthesis, purification, and folding of C-X-C and C-C chemokines.Methods in enzymology, 287
B. Levine, D. Sodora (2006)
HIV and CXCR4 in a kiss of autophagic death.The Journal of clinical investigation, 116 8
D. Langford, J. Marquie‐Beck, S. Almeida, D. Lazzaretto, S. Letendre, I. Grant, J. McCutchan, E. Masliah, R. Ellis, The Group (2011)
Relationship of antiretroviral treatment to postmortem brain tissue viral load in human immunodeficiency virus-infected patientsJournal of NeuroVirology, 12
I. Everall, J. Glass, J. McArthur, E. Spargo, P. Lantos (1994)
Neuronal density in the superior frontal and temporal gyri does not correlate with the degree of human immunodeficiency virus-associated dementiaActa Neuropathologica, 88
L. Lasagni, M. Francalanci, F. Annunziato, E. Lazzeri, S. Giannini, L. Cosmi, C. Sagrinati, B. Mazzinghi, C. Orlando, E. Maggi, F. Marra, S. Romagnani, M. Serio, P. Romagnani (2003)
An Alternatively Spliced Variant of CXCR3 Mediates the Inhibition of Endothelial Cell Growth Induced by IP-10, Mig, and I-TAC, and Acts as Functional Receptor for Platelet Factor 4The Journal of Experimental Medicine, 197
Britta Hult, G. Chana, E. Masliah, I. Everall (2008)
Neurobiology of HIVInternational Review of Psychiatry, 20
N. Fletcher, David Brayden, B. Brankin, J. Callanan (2008)
Feline immunodeficiency virus infection: a valuable model to study HIV-1 associated encephalitis.Veterinary immunology and immunopathology, 123 1-2
Y. Ohsumi (2001)
Molecular dissection of autophagy: two ubiquitin-like systems, 2
D. Datta, J. Flaxenburg, S. Laxmanan, C. Geehan, M. Grimm, A. Waaga-Gasser, D. Briscoe, S. Pal (2006)
Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the development of human breast cancer.Cancer research, 66 19
R. Janssen, O. Nwanyanwu, R. Selik, J. Stehr-Green (1992)
Epidemiology of human immunodeficiency virus encephalopathy in the United StatesNeurology, 42
Y. Ohtani, M. Minami, Nami Kawaguchi, A. Nishiyori, J. Yamamoto, S. Takami, M. Satoh (1998)
Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cellsNeuroscience Research, 31
Previous studies have implicated CXCL12 in the neuropathogenesis of HIV infection. Proteolysis of CXCL12 generates a neurotoxic molecule, CXCL12(5‐67), which engages and activates CXCR3, in addition to exhibiting increased expression in the brains of patients with HIV‐associated dementia (HAD). Herein, we investigated CXCR3‐mediated neuronal injury, particularly, its contribution to autophagy suppression and the concomitant effects of antiretroviral therapy using human brain samples and models of HIV neuropathogenesis. Neurons in the brains of HAD patients and feline immunodeficiency virus (FlV)‐infected animals, as well as cultured human neurons, expressed CXCR3, which was modulated in a ligand‐specific manner. Exposure of human neurons to CXCL12(5‐67) caused a reduction in the autophagy‐associated molecule LC3 (P<0.05) and neuronal survival (P<0.05), which recapitulated findings in FIV‐ and HIV‐infected brains (P<0.05). Oral didanosine (ddI) treatment of FIV‐infected animals reduced neurobehavioral abnormalities in conjunction with diminished plasma viral load (P<0.05). F4/80 transcript abundance and CXCL12(5‐67) immunoreactivity were reduced with restored neuronal LC3 expression in the brains of FIV‐infected animals after ddI treatment (P<0.05). ddI treatment also prevented microglial activation and depletion of synaptic proteins in the cortex of FIV‐infected animals (P<0.05). These findings indicate that the beneficial effects of ddI might be a consequence of a reduced systemic viral burden and concurrent leukocyte activation, leading to diminished neuroinflammation with preservation of neuronal autophagy by regulating CXCR3 activation.—Zhu, Y., Vergote, D., Pardo, C., Noorbakhsh, F., McArthur, J. C., Hollenberg, M. D., Overall, C. M., Power, C. CXCR3 activation by lentivirus infection suppresses neuronal autophagy: neuroprotective effects of antiretroviral therapy. FASEB J. 23, 2928–2941 (2009). www.fasebj.org
The FASEB journal – Wiley
Published: Sep 1, 2009
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.