Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Galloway, S. Frederick-Osborne, Richard Seymour, Sarah Contini, David Smith (2000)
Abuse and therapeutic potential of gamma-hydroxybutyric acid.Alcohol, 20 3
Shanju Zhang, I. Kinloch, A. Windle (2006)
Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes.Nano letters, 6 3
M. Čadek, J. Coleman, K. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. Nagy, K. Szostak, F. Béguin, W. Blau (2004)
Reinforcement of polymers with carbon nanotubes: The role of nanotube surface areaNano Letters, 4
Wenhui Song, I. Kinloch, A. Windle (2003)
Nematic Liquid Crystallinity of Multiwall Carbon NanotubesScience, 302
J. Choi, M. Strano (2007)
Solvatochromism in single-walled carbon nanotubesApplied Physics Letters, 90
B. Landi, H. Ruf, J. Worman, R. Raffaelle (2004)
Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon NanotubesJournal of Physical Chemistry B, 108
Howard Wang, Wei Zhou, D. Ho, K. Winey, J. Fischer, C. Glinka, E. Hobbie (2004)
Dispersing Single-Walled Carbon Nanotubes with Surfactants: A Small Angle Neutron Scattering StudyNano Letters, 4
K. Nicholson, R. Balster (2001)
GHB: a new and novel drug of abuse.Drug and alcohol dependence, 63 1
M. Piastra, A. Tempera, E. Caresta, A. Chiaretti, O. Genovese, G. Zorzi, S. Pulitanò, D. Pietrini, G. Polidori (2006)
Lung injury from "liquid ecstasy": a role for coagulation activation?Pediatric emergency care, 22 5
Jie Liu, M. Casavant, M. Cox, D. Walters, P. Boul, W. Lu, A. Rimberg, Kenneth Smith, D. Colbert, R. Smalley (1999)
Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templatesChemical Physics Letters, 303
V. Nicolosi, D. Vengust, D. Mihailovic, W. Blau, J. Coleman (2006)
Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersionsChemical Physics Letters, 425
Wenhui Song, A. Windle (2005)
Isotropic−Nematic Phase Transition of Dispersions of Multiwall Carbon NanotubesMacromolecules, 38
Shahar Nuriel, Luqi Liu, A. Barber, H. Wagner (2005)
Direct measurement of multiwall nanotube surface tensionChemical Physics Letters, 404
C. Furtado, U. Kim, H. Gutiérrez, L. Pan, E. Dickey, P. Eklund (2004)
Debundling and dissolution of single-walled carbon nanotubes in amide solvents.Journal of the American Chemical Society, 126 19
V. Nicolosi, D. Vrbanic, A. Mrzel, J. Mccauley, S. O'Flaherty, C. McGuinness, G. Compagnini, D. Mihailovic, W. Blau, J. Coleman (2005)
Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study.The journal of physical chemistry. B, 109 15
J. Bahr, E. Mickelson, M. Bronikowski, R. Smalley, J. Tour (2001)
Dissolution of small diameter single-wall carbon nanotubes in organic solvents?Chemical Communications
L. Vaisman, H. Wagner, G. Marom (2006)
The role of surfactants in dispersion of carbon nanotubes.Advances in colloid and interface science, 128-130
J. Fagan, B. Landi, I. Mandelbaum, V. Bajpai, B. Bauer, K. B. Migler, J. Simpson, A. Walker, Ryan Raffaelle, E. Hobbie (2006)
Comparative measures of single-wall carbon nanotube dispersion.The journal of physical chemistry. B, 110 47
S. Ramesh, L. Ericson, V. Davis, R. Saini, C. Kittrell, M. Pasquali, W. Billups, W. Adams, R. Hauge, R. Smalley (2004)
Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct ProtonationJournal of Physical Chemistry B, 108
J. Coleman, A. Fleming, S. Maier, S. O'Flaherty, A. Minett, M. Ferreira, S. Hutzler, W. Blau (2004)
Binding kinetics and SWNT bundle dissociation in low concentration polymer-nanotube dispersionsJournal of Physical Chemistry B, 108
Y. Sabba, E. Thomas (2004)
High-Concentration Dispersion of Single-Wall Carbon NanotubesMacromolecules, 37
V. Nicolosi, D. Vrbanic, A. Mrzel, J. Mccauley, S. O'Flaherty, D. Mihailovic, W. Blau, J. Coleman (2005)
Solubility of Mo6S4.5I4.5 nanowiresChemical Physics Letters, 401
Hyunhyub Ko, V. Tsukruk (2006)
Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors.Nano letters, 6 7
Vasiliki Zorbas, A. Ortiz-Acevedo, A. Dalton, Mario Yoshida, G. Dieckmann, R. Draper, R. Baughman, M. José-Yacamán, I. Musselman (2004)
Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes.Journal of the American Chemical Society, 126 23
B. McCarthy, J. Coleman, S. Curran, A. Dalton, A. Davey, Z. Kónya, A. Fonseca, J. Nagy, W. Blau (2000)
Observation of site selective binding in a polymer nanotube compositeJournal of Materials Science Letters, 19
Bin Zhao, Hui Hu, A. Yu, D. Perea, R. Haddon (2005)
Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers.Journal of the American Chemical Society, 127 22
G. Duesberg, M. Burghard, J. Muster, G. Philipp (1998)
Separation of carbon nanotubes by size exclusion chromatographyChemical Communications
R. Murphy, J. Coleman, M. Čadek, B. McCarthy, M. Bent, A. Drury, R. Barklie, W. Blau (2002)
High-Yield, Nondestructive Purification and Quantification Method for Multiwalled Carbon NanotubesJournal of Physical Chemistry B, 106
K. Ausman, R. Piner, O. Lourie, R. Ruoff, M. Korobov (2000)
Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubesJournal of Physical Chemistry B, 104
V. Davis, L. Ericson, A. Parra‐Vasquez, H. Fan, YuHuang Wang, Valentin Prieto, Jason Longoria, S. Ramesh, R. Saini, C. Kittrell, W. Billups, W. Adams, R. Hauge, R. Smalley, M. Pasquali (2004)
Phase Behavior and Rheology of SWNTs in SuperacidsMacromolecules, 37
S. Badaire, C. Zakri, M. Maugey, A. Derré, J. Barisci, G. Wallace, P. Poulin (2005)
Liquid Crystals of DNA‐Stabilized Carbon NanotubesAdvanced Materials, 17
Y. Maeda, S. Kimura, Yuya Hirashima, M. Kanda, Y. Lian, T. Wakahara, T. Akasaka, T. Hasegawa, H. Tokumoto, Tetsuo Shimizu, H. Kataura, Y. Miyauchi, S. Maruyama, K. Kobayashi, S. Nagase (2004)
Dispersion of Single-Walled Carbon Nanotube Bundles in Nonaqueous SolutionJournal of Physical Chemistry B, 108
M. O'connell, S. Bachilo, C. Huffman, V. Moore, M. Strano, E. Hároz, K. Rialon, P. Boul, William Noon, C. Kittrell, Jianpeng Ma, Jianpeng Ma, R. Hauge, R. Weisman, R. Smalley (2002)
Band Gap Fluorescence from Individual Single-Walled Carbon NanotubesScience, 297
A. Dalton, C. Stephan, J. Coleman, B. McCarthy, P. Ajayan, S. Lefrant, P. Bernier, W. Blau, H. Byrne (2000)
Selective interaction of a semiconjugated organic polymer with single-wall nanotubesJournal of Physical Chemistry B, 104
A. Windle (1987)
Liquid Crystalline PolymersMRS Bulletin, 12
R. Blake, Y. Gun’ko, J. Coleman, M. Čadek, A. Fonseca, J. Nagy, W. Blau (2004)
A generic organometallic approach toward ultra-strong carbon nanotube polymer composites.Journal of the American Chemical Society, 126 33
P. Umek, D. Vrbanic, M. Remškar, T. Mertelj, P. Venturini, S. Pejovnik, D. Mihailovic (2002)
An effective surfactant-free isolation procedure for single-wall carbon nanotubesCarbon, 40
S. Giordani, S. Bergin, V. Nicolosi, S. Lebedkin, M. Kappes, W. Blau, J. Coleman (2006)
Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions.The journal of physical chemistry. B, 110 32
G. Dukovic, B. White, Zhiyong Zhou, Feng Wang, S. Jockusch, M. Steigerwald, T. Heinz, R. Friesner, N. Turro, L. Brus (2004)
Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes.Journal of the American Chemical Society, 126 46
C. Zakri, P. Poulin (2006)
Phase behavior of nanotube suspensions: from attraction induced percolation to liquid crystalline phasesJournal of Materials Chemistry, 16
Large-scale debundling of single-walled nanotubes has beendemonstrated by dilution of nanotube dispersions in the solvent-butyrolactone. This liquid, sometimes referred to as liquid ecstasy, is well known for itsnarcotic properties. At high concentrations the dispersions form an anisotropic,liquid crystalline phase which can be removed by mild centrifugation. At lowerconcentrations an isotropic phase is observed with a biphasic region at intermediateconcentrations. By measuring the absorbance before and after centrifugation,as a function of concentration, the relative anisotropic and isotropic nanotubeconcentrations can be monitored. The upper limit of the pure isotropic phase wasCNT0.004 mg ml1, suggesting that this can be considered the nanotube dispersion limit in-butyrolactone. After centrifugation, the dispersions are stable against sedimentation andfurther aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies onfilms deposited from the isotropic phase reveal that the bundle diameter distributiondecreases dramatically as concentration is decreased. Detailed data analysis suggests thepresence of an equilibrium bundle number density. A population of individualnanotubes is always observed which increases with decreasing concentration untilalmost 40% of all dispersed objects are individual nanotubes at a concentration of6 × 104 mg ml1. The number density of individual nanotubes peaks at a concentration of6 × 103 mg ml1 where almost 10% of the nanotubes by mass are individualized.
Nanotechnology – IOP Publishing
Published: Nov 14, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.