Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Cheung, P. Gulati, Stephen O’Rahilly, Giles Yeo (2013)
FTO expression is regulated by availability of essential amino acidsInternational Journal of Obesity, 37
E. Estornell, J. Cabo, T. Barber (1995)
Protein synthesis is stimulated in nutritionally obese rats.The Journal of nutrition, 125 5
A. Scuteri, S. Sanna, Wei-Min Chen, M. Uda, Giuseppe Albai, J. Strait, S. Najjar, R. Nagaraja, M. Orrù, G. Usala, Mariano Dei, Sandra Lai, A. Maschio, F. Busonero, A. Mulas, G. Ehret, Ashley Fink, A. Weder, R. Cooper, P. Galan, A. Chakravarti, D. Schlessinger, A. Cao, E. Lakatta, G. Abecasis (2007)
Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related TraitsPLoS Genetics, 3
Chris Church, L. Moir, F. McMurray, C. Girard, G. Banks, L. Teboul, S. Wells, J. Bruning, P. Nolan, F. Ashcroft, R. Cox (2010)
Overexpression of Fto leads to increased food intake and results in obesityNature genetics, 42
Jing Zhou, B. Liang, Hong Li (2010)
Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase.Biochemistry, 49 29
TM Frayling, NJ Timpson, MN Weedon (2007)
A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesityScience, 316
Michaela Wawrzik, U. Unmehopa, D. Swaab, J. Nes, K. Buiting, B. Horsthemke (2010)
The C15orf2 gene in the Prader–Willi syndrome region is subject to genomic imprinting and positive selectionneurogenetics, 11
K. Jack, C. Bellodi, D. Landry, Rachel Niederer, A. Meškauskas, S. Musalgaonkar, N. Kopmar, O. Krasnykh, A. Dean, S. Thompson, D. Ruggero, J. Dinman (2011)
rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells.Molecular cell, 44 4
G. Stratigopoulos, C. Leduc, M. Cremona, W. Chung, R. Leibel (2010)
Cut-like Homeobox 1 (CUX1) Regulates Expression of the Fat Mass and Obesity-associated and Retinitis Pigmentosa GTPase Regulator-interacting Protein-1-like (RPGRIP1L) Genes and Coordinates Leptin Receptor Signaling*The Journal of Biological Chemistry, 286
Vidisha Tripathi, J. Ellis, Zhen Shen, David Song, Q. Pan, A. Watt, S. Freier, C. Bennett, Alok Sharma, P. Bubulya, B. Blencowe, S. Prasanth, K. Prasanth (2010)
The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation.Molecular cell, 39 6
C. Dina, D. Meyre, S. Gallina, E. Durand, A. Körner, P. Jacobson, L. Carlsson, W. Kiess, V. Vatin, C. Lecoeur, J. Delplanque, Emmanuel Vaillant, F. Pattou, J. Ruiz, J. Weill, C. Lévy‐Marchal, F. Horber, N. Potoczna, S. Hercberg, C. Stunff, P. Bougnères, P. Kovacs, M. Marre, B. Balkau, S. Cauchi, J. Chévre, P. Froguel (2007)
Variation in FTO contributes to childhood obesity and severe adult obesityNature Genetics, 39
Tobias Huber, G. Walz, E. Kuehn (2011)
mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression.Kidney international, 79 5
S. Boissel, O. Reish, K. Proulx, Hiroko Kawagoe-Takaki, B. Sedgwick, G. Yeo, D. Meyre, C. Golzio, F. Molinari, Noman Kadhom, H. Etchevers, V. Saudek, I. Farooqi, P. Froguel, P. Froguel, T. Lindahl, S. O’Rahilly, A. Munnich, L. Colleaux (2009)
Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations.American journal of human genetics, 85 1
G. Jia, Cai-Guang Yang, Shangdong Yang, Xing Jian, C. Yi, Zhiqiang Zhou, Chuan He (2008)
Oxidative demethylation of 3‐methylthymine and 3‐methyluracil in single‐stranded DNA and RNA by mouse and human FTOFEBS Letters, 582
S. Starr, K. Jameson, Annu Hogquist, Rev, J Roose, M. Mollenauer, V. Gupta, J. Stone, A. Weiss, L Berg, L. Finkelstein, J. Lucas, P. Schwartzberg, M Fukuda, T. Kojima, H. Kabayama, K. Mikoshiba, J. Biol, K Ching, Y. Kawakami, T. Kawakami, C. Tsoukas, A Guse, E. Greiner, F. Emmrich, K. Brand, Alberola-Ila, A. Altman, N. Gascoigne, G. Koretzky, L. Min, K. Mowen, R. Reisfeld, C. Schmedt, T. Frayling, N. Timpson, M. Weedon, E. Zeggini, R. Freathy, C. Lindgren, J. Perry, K. Elliott, H. Lango, N. Rayner, B. Shields, L. Harries, J. Barrett, S. Ebrahim, D. Lawlor, S. Ring, Y. Ben-Shlomo, L. Ferrucci, R. Loos, C. Palmer
References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S7 References a Common Variant in the Fto Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity
Lisa Neumann, Yolanda Markaki, E. Mladenov, D. Hoffmann, K. Buiting, B. Horsthemke (2012)
The imprinted NPAP1/C15orf2 gene in the Prader-Willi syndrome region encodes a nuclear pore complex associated protein.Human molecular genetics, 21 18
G. Jia, Ye Fu, Xu Zhao, Qing Dai, G. Zheng, Ying Yang, C. Yi, T. Lindahl, T. Pan, Yun‐Gui Yang, Chuan He (2011)
N6-Methyladenosine in Nuclear RNA is a Major Substrate of the Obesity-Associated FTONature chemical biology, 7
Julia Fischer, Linda Koch, Christian Emmerling, Jeanette Vierkotten, Thomas Peters, J. Brüning, U. Rüther (2009)
Inactivation of the Fto gene protects from obesityNature, 458
T. Gerken, C. Girard, Y. Tung, Celia Webby, V. Saudek, K. Hewitson, G. Yeo, M. McDonough, Sharon Cunliffe, L. McNeill, J. Galvanovskis, P. Rorsman, P. Robins, X. Prieur, A. Coll, Marcella Ma, Z. Jovanović, I. Farooqi, B. Sedgwick, I. Barroso, T. Lindahl, C. Ponting, F. Ashcroft, S. O’Rahilly, C. Schofield (2007)
The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid DemethylaseScience, 318
Kate Meyer, Yogesh Saletore, P. Zumbo, O. Elemento, C. Mason, S. Jaffrey (2012)
Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop CodonsCell, 149
Chris Church, Sheena Lee, Eleanor Bagg, J. McTaggart, R. Deacon, T. Gerken, A. Lee, L. Moir, J. Mecinović, M. Quwailid, C. Schofield, F. Ashcroft, R. Cox (2009)
A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO GenePLoS Genetics, 5
D. Dominissini, S. Moshitch-Moshkovitz, Schraga Schwartz, M. Salmon-Divon, L. Ungar, Sivan Osenberg, K. Cesarkas, J. Jacob-Hirsch, N. Amariglio, M. Kupiec, R. Sorek, G. Rechavi (2012)
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seqNature, 485
Yong Zhang, Scott Goldman, Rebecca Baerga, Yun Zhao, M. Komatsu, Shengkan Jin (2009)
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesisProceedings of the National Academy of Sciences, 106
JD Rabinowitz, E White (2010)
Autophagy and metabolismScience, 330
Zhifu Han, T. Niu, Jun-biao Chang, Xiaoguang Lei, Mingyan Zhao, Qiang Wang, W. Cheng, Jinjing Wang, Yi Feng, J. Chai (2010)
Crystal structure of the FTO protein reveals basis for its substrate specificityNature, 464
D. Spector, A. Lamond (2011)
Nuclear speckles.Cold Spring Harbor perspectives in biology, 3 2
P. Crain (1990)
Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry.Methods in enzymology, 193
Susmita Kaushik, J. Rodríguez-Navarro, E. Arias, R. Kiffin, S. Sahu, G. Schwartz, A. Cuervo, Rajat Singh (2011)
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance.Cell metabolism, 14 2
Guowei Wu, Mu Xiao, Chunxing Yang, Yi-Tao Yu (2011)
U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNPThe EMBO Journal, 30
Tea Berulava, B. Horsthemke (2010)
The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levelsEuropean Journal of Human Genetics, 18
NGFN plus 01GS0820) and Deutsche Forschungsgemeinschaft (LI309/19-1, LI309/30-2)
L. Berg, H. Waal, Joan Han, B. Ylstra, P. Eijk, M. Nesterova, P. Heutink, C. Stratakis (2010)
Investigation of a patient with a partial trisomy 16q including the fat mass and obesity associated gene (FTO): Fine mapping and FTO gene expression studyAmerican Journal of Medical Genetics Part A, 152A
Qiong Wu, Rudel Saunders, Maria Szkudlarek-Mikho, I. Serna, K. Chin (2010)
The obesity-associated Fto gene is a transcriptional coactivator.Biochemical and biophysical research communications, 401 3
Steven Robbens, P. Rouzé, J. Cock, J. Spring, A. Worden, Y. Peer (2007)
The FTO Gene, Implicated in Human Obesity, Is Found Only in Vertebrates and Marine AlgaeJournal of Molecular Evolution, 66
A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and – to a lesser and varying extent – in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.
European Journal of Human Genetics – Springer Journals
Published: Aug 8, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.