Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.

Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial... The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Chemical Information and Modeling Pubmed

Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.

Journal of Chemical Information and Modeling , Volume 47 (4): -1689 – Oct 1, 2007

Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.


Abstract

The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.

Loading next page...
 
/lp/pubmed/systematic-analysis-of-enzyme-catalyzed-reaction-patterns-and-XqlmK1VK0f

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1549-9596
DOI
10.1021/ci700006f
pmid
17516640

Abstract

The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.

Journal

Journal of Chemical Information and ModelingPubmed

Published: Oct 1, 2007

There are no references for this article.