Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Hagfeldt, G. Boschloo, Licheng Sun, L. Kloo, H. Pettersson (2010)
Dye-sensitized solar cells.Chemical reviews, 110 11
P. Sommeling, B. O'Regan, R. Haswell, H. Smit, N. Bakker, J. Smits, J. Kroon, J. Roosmalen (2006)
Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.The journal of physical chemistry. B, 110 39
H. Snaith, R. Humphry‐Baker, Peter Chen, I. Cesar, S. Zakeeruddin, M. Grätzel (2008)
Charge collection and pore filling in solid-state dye-sensitized solar cellsNanotechnology, 19
Yukyeong Kim, Yukyeong Kim, Y. Sung, Jiangbin Xia, M. Lira-Cantú, N. Masaki, S. Yanagida (2008)
Solid-state dye-sensitized TiO2 solar cells using poly(3,4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodesJournal of Photochemistry and Photobiology A-chemistry, 193
Holger Hintz, H. Peisert, H. Egelhaaf, T. Chassé (2011)
Reversible and Irreversible Light-Induced p-Doping of P3HT by Oxygen Studied by Photoelectron Spectroscopy (XPS/UPS)Journal of Physical Chemistry C, 115
U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel (1998)
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficienciesNature, 395
G. Munuera, V. Rives-Arnau, A. Saucedo (1979)
Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.—Role of hydroxyl groups in photo-adsorptionJournal of the Chemical Society, Faraday Transactions, 75
A. Stevanovic, M. Büttner, Zhen Zhang, J. Yates (2012)
Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure.Journal of the American Chemical Society, 134 1
A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. Errico, James Kirkpatrik, J. Ball, P. Docampo, I. McPherson, H. Snaith (2013)
Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells.Physical chemistry chemical physics : PCCP, 15 7
E. Voroshazi, B. Verreet, Tom Aernouts, P. Heremans (2011)
Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cellsSolar Energy Materials and Solar Cells, 95
H. Mosbacker, Y. Strzhemechny, B. White, P. Smith, D. Look, D. Reynolds, C. Litton, L. Brillson (2005)
Role of Near-Surface States in Ohmic-Schottky Conversion of Au Contacts to ZnOApplied Physics Letters, 87
J. Burschka, Amalie Dualeh, F. Kessler, E. Baranoff, Ngoc-Lê Cevey-Ha, C. Yi, M. Nazeeruddin, M. Grätzel (2011)
Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells.Journal of the American Chemical Society, 133 45
Thomas Hamann, R. Jensen, A. Martinson, H. Ryswyk, J. Hupp (2008)
Advancing beyond current generation dye-sensitized solar cellsEnergy and Environmental Science, 1
H. Matsui, K. Okada, T. Kitamura, N. Tanabe (2009)
Thermal stability of dye-sensitized solar cells with current collecting gridSolar Energy Materials and Solar Cells, 93
S. Ito, Peter Chen, P. Comte, M. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel (2007)
Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cellsProgress in Photovoltaics: Research and Applications, 15
N. Deskins, M. Dupuis (2007)
Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterizationPhysical Review B, 75
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
Emma Carter, A. Carley, D. Murphy (2007)
Evidence for O2- Radical Stabilization at Surface Oxygen Vacancies on Polycrystalline TiO2Journal of Physical Chemistry C, 111
U. Cappel, T. Daeneke, U. Bach (2012)
Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance.Nano letters, 12 9
M. Reese, A. Morfa, M. White, N. Kopidakis, S. Shaheen, G. Rumbles, D. Ginley (2008)
Pathways for the degradation of organic photovoltaic P3HT:PCBM based devicesSolar Energy Materials and Solar Cells, 92
Björn Andersson, Staffan Jacobsson (2000)
Monitoring and assessing technology choice: the case of solar cellsEnergy Policy, 28
G. Lu, A. Linsebigler, J. Yates (1995)
THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACEJournal of Chemical Physics, 102
N. Kato, K. Higuchi, Hiromitsu Tanaka, Nakajima Junji, Toshiyuki Sano, Tatsuo Toyoda (2011)
Improvement in long-term stability of dye-sensitized solar cell for outdoor useSolar Energy Materials and Solar Cells, 95
T. Leijtens, Jongchul Lim, J. Teuscher, T. Park, H. Snaith (2013)
Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar CellsAdvanced Materials, 25
J. Ball, Nicola Davis, James Wilkinson, J. Kirkpatrick, J. Teuscher, R. Gunning, H. Anderson, H. Snaith (2012)
A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cellsRSC Advances, 2
I.-Kang Ding, N. Tétreault, J. Brillet, B. Hardin, Eva Smith, S. Rosenthal, F. Sauvage, M. Grätzel, M. McGehee (2009)
Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device PerformanceAdvanced Functional Materials, 19
P. Docampo, H. Snaith (2011)
Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cellsNanotechnology, 22
E. Palomares, J. Clifford, S. Haque, T. Lutz, J. Durrant (2002)
Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films.Chemical communications, 14
B. O'Regan, J. Durrant, P. Sommeling, N. Bakker (2007)
Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short CircuitJournal of Physical Chemistry C, 111
D. Hurum, Alexander Agrios, K. Gray, T. Rajh, M. Thurnauer (2003)
Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPRJournal of Physical Chemistry B, 107
B. Hardin, H. Snaith, M. McGehee (2012)
The renaissance of dye-sensitized solar cellsNature Photonics, 6
Md. Nazeeruddin, E. Baranoff, M. Grätzel (2011)
Dye-sensitized solar cells: A brief overviewSolar Energy, 85
Zhen Zhang, J. Yates (2012)
Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces.Chemical reviews, 112 10
B. O'Regan, Li Xiaoe, T. Ghaddar (2012)
Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cellsEnergy and Environmental Science, 5
B. Paci, A. Generosi, V. Albertini, P. Perfetti, R. Bettignies, C. Sentein (2008)
Photo-degradation and stabilization effects in operating organic photovoltaic devices by joint photo-current and morphological monitoringSolar Energy Materials and Solar Cells, 92
Chaiya Prasittichai, J. Hupp (2010)
Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer depositionJournal of Physical Chemistry Letters, 1
J. Bisquert, A. Zaban, Miri Greenshtein, I. Mora‐Seró (2004)
Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.Journal of the American Chemical Society, 126 41
T. Brennan, J. Bakke, I.-Kang Ding, B. Hardin, William Nguyen, R. Mondal, Colin Bailie, G. Margulis, E. Hoke, A. Sellinger, M. McGehee, S. Bent (2012)
The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells.Physical chemistry chemical physics : PCCP, 14 35
T. Leijtens, G. Eperon, Sandeep Pathak, A. Abate, Michael Lee, H. Snaith (2013)
Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cellsNature Communications, 4
N. Takubo, Y. Muraoka, Z. Hiroi (2009)
Conductivity Switching by Ultraviolet Light in Tin Dioxide Thin FilmsApplied Physics Express, 2
A. Ghosh, F. Wakim, R. Addiss (1969)
Photoelectronic Processes in RutilePhysical Review, 184
Y. Saito, Norihiro Fukuri, R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida (2004)
Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductorElectrochemistry Communications, 6
F. Knorr, Candy Mercado, J. McHale (2008)
Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase TiO2 : Influence of Contacting Solvent and Interphasial Electron TransferJournal of Physical Chemistry C, 112
R. Schafranek, S. Payan, M. Maglione, A. Klein (2008)
Barrier height at ( Ba , Sr ) TiO 3 / Pt interfaces studied by photoemissionPhysical Review B, 77
G. Rothenberger, D. Fitzmaurice, M. Graetzel (1992)
Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide filmsThe Journal of Physical Chemistry, 96
M. Iwamoto, Y. Yoda, M. Egashira, T. Seiyama (1976)
Study of metal oxide catalysts by temperature programmed desorption. 1. Chemisorption of oxygen on nickel oxideThe Journal of Physical Chemistry, 80
S. Bertho, G. Janssen, T. Cleij, B. Conings, W. Moons, Abay Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande (2008)
Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cellsSolar Energy Materials and Solar Cells, 92
J. Clifford, T. Bell, P. Tinnefeld, M. Heilemann, S. Melnikov, J. Hotta, M. Sliwa, P. Dedecker, M. Sauer, J. Hofkens, E. Yeow (2007)
Fluorescence of single molecules in polymer films: sensitivity of blinking to local environment.The journal of physical chemistry. B, 111 25
N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, Hiromitsu Tanaka, T. Motohiro, Toshiyuki Sano, Tatsuo Toyoda (2009)
Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working conditionSolar Energy Materials and Solar Cells, 93
M. Lira-Cantú, K. Norrman, J. Andreasen, N. Casañ-Pastor, F. Krebs (2007)
Detrimental Effect of Inert Atmospheres on Hybrid Solar Cells Based on Semiconductor OxidesJournal of The Electrochemical Society, 154
L. Brillson, Yicheng Lu (2011)
ZnO Schottky barriers and Ohmic contactsJournal of Applied Physics, 109
J. Durrant, S. Haque, E. Palomares (2004)
Towards optimisation of electron transfer processes in dye sensitised solar cellsCoordination Chemistry Reviews, 248
Brian and, F. Lenzmann (2004)
Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic CellsJournal of Physical Chemistry B, 108
J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, F. Koch (1999)
Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cellSolar Energy Materials and Solar Cells, 56
H. Al-Dmour, D. Taylor (2009)
Revisiting the origin of open circuit voltage in nanocrystalline-TiO2/polymer heterojunction solar cellsApplied Physics Letters, 94
Farahnaz Nour-Mohhamadi, S. Nguyen, G. Boschloo, A. Hagfeldt, T. Lund (2005)
Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles.The journal of physical chemistry. B, 109 47
C. Körber, S. Harvey, T. Mason, A. Klein (2008)
Barrier heights at the SnO2/Pt interface: In situ photoemission and electrical propertiesSurface Science, 602
S. Schuller, P. Schilinsky, J. Hauch, C. Brabec (2004)
Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurementsApplied Physics A, 79
Jinyun Liao, Hailong Lin, Hong-Yan Chen, D. Kuang, C. Su (2012)
High-performance dye-sensitized solar cells based on hierarchical yolk–shell anatase TiO2beadsJournal of Materials Chemistry, 22
E. Palomares, J. Clifford, S. Haque, T. Lutz, J. Durrant (2003)
Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers.Journal of the American Chemical Society, 125 2
Xintong Zhang, Taketo Taguchi, Haibin Wang, Q. Meng, O. Sato, A. Fujishima (2007)
Investigation of the stability of solid-state dye-sensitized solar cellsResearch on Chemical Intermediates, 33
P. Docampo, S. Guldin, M. Stefik, Priti Tiwana, M. Orilall, S. Hüttner, Hiroaki Sai, U. Wiesner, U. Steiner, H. Snaith (2010)
Control of Solid‐State Dye‐Sensitized Solar Cell Performance by Block‐Copolymer‐Directed TiO2 SynthesisAdvanced Functional Materials, 20
A. Cowley, S.M.Sze (1965)
Surface States and Barrier Height of Metal‐Semiconductor SystemsJournal of Applied Physics, 36
M. Templin, A. Franck, A. Chesne, H. Leist, Yuanming Zhang, R. Ulrich, V. Schädler, U. Wiesner (1997)
Organically modified aluminosilicate mesostructures from block copolymer phasesScience, 278 5344
P. Sommeling, M. Späth, H.J.P Smit, N.J Bakker, J.M Kroon (2004)
Long-term stability testing of dye-sensitized solar cellsJournal of Photochemistry and Photobiology A-chemistry, 164
Antonio Guerrero, P. Boix, L. Marchesi, Teresa Ripolles-Sanchis, E. Pereira, G. Garcia‐Belmonte (2012)
Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cellsSolar Energy Materials and Solar Cells, 100
C. Valentin, G. Pacchioni, A. Selloni (2009)
Reduced and n-Type Doped TiO2: Nature of Ti3+ SpeciesJournal of Physical Chemistry C, 113
The solid‐state dye‐sensitized solar cell (DSSC) was introduced to overcome inherent manufacturing and instability issues of the electrolyte‐based DSSC and progress has been made to deliver high photovoltaic efficiencies at low cost. However, despite 15 years research and development, there still remains no clear demonstration of long‐term stability. Here, solid‐state DSSCs are subjected to the severe aging conditions of continuous illumination at an elevated temperature. A fast deterioration in performance is observed for devices encapsulated in the absence of oxygen. The photovoltaic performance recovers when re‐exposed to air. This reversible behavior is attributed to three related processes: i) the creation of light and oxygen sensitive electronic shunting paths between TiO2 and the top metal electrode, ii) increased recombination at the TiO2/organic interface, and iii) the creation of deep electron traps that reduce the photocurrent. The device deterioration is remedied by the formation of an insulating alumino‐silicate shell around the TiO2 nanocrystals, which reduces interfacial recombination, and the introduction of an insulating mesoporous SiO2 buffer layer between the top electrode and TiO2, which acts as a permanent insulating barrier between the TiO2 and the metal electrode, preventing shunting.
Advanced Energy Materials – Wiley
Published: Jun 1, 2014
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.