Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Allamandola, S. Sandford, G. Valero (1988)
Photochemical and thermal evolution of interstellar/precometary ice analogsIcarus, 76
W. Webber, S. Yushak (1983)
A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy rangeThe Astrophysical Journal, 275
C. Shen, J. Greenberg, W. Schutte, E. Dishoeck (2004)
Cosmic ray induced explosive chemical desorption in dense cloudsAstronomy and Astrophysics, 415
M. Moore, R. Hudson (1998)
Infrared Study of Ion-Irradiated Water-Ice Mixtures with Hydrocarbons Relevant to CometsIcarus, 135
C. Bennett, S. Chen, B. Sun, A. Chang, R. Kaiser (2007)
Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial IcesThe Astrophysical Journal, 660
V. Magnasco, G. Musso, G. Figari (1976)
Localized orbitals and short‐range molecular interactions. IV. Nonadditivity in quartet and quintet states of hydrogen atomsJournal of Chemical Physics, 64
Sheng-Yuan Liu, J. Girart, A. Remijan, L. Snyder (2002)
Formic Acid in Orion KL from 1 Millimeter Observations with the Berkeley-Illinois-Maryland Association ArrayThe Astrophysical Journal, 576
D. Andrade, H. Boechat-Roberty, S. Pilling, Ê. Silveira, M. Rocco (2009)
Positive and negative ionic desorption from condensed formic acid photoexcited around the O 1s-edge: Relevance to cometary and planetary surfacesSurface Science, 603
J. Ziegler, J. Biersack, U. Littmark (1985)
stopping and range of ions in solids
G. Leto, G. Baratta (2003)
Ly-alpha photon induced amorphization of Ic water ice at 16 Kelvin. Effects and quantitative comparison with ion irradiationAstronomy and Astrophysics, 397
U. Raut, M. Fama, B. Teolis, R. Baragiola (2007)
Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption.The Journal of chemical physics, 127 20
I. Martín, M. Bertin, A. Domaracka, R. Azria, E. Illenberger, A. Lafosse (2008)
Chemistry induced by low-energy electrons in condensed multilayers of pure small organic acidsInternational Journal of Mass Spectrometry, 277
D. Andrade, H. Boechat-Roberty, Ê. Silveira, S. Pilling, P. Iza, R. Martinez, L. Farenzena, M. Homem, M. Rocco (2008)
Astrophysical Icy Surface Simulation under Energetic Particles and Radiation Field in Formic AcidJournal of Physical Chemistry C, 112
Y. Maréchal (1987)
IR spectra of carboxylic acids in the gas phase: A quantitative reinvestigationJournal of Chemical Physics, 87
A. Barros, V. Bordalo, E. Duarte, Ê. Silveira, A. Domaracka, H. Rothard, P. Boduch (2011)
Cosmic ray impact on astrophysical ices: laboratory studies on heavy ion irradiation of methaneAstronomy and Astrophysics, 531
E. Maçôas, J. Lundell, M. Pettersson, L. Khriachtchev, R. Fausto, M. Räsänen (2003)
Vibrational spectroscopy of cis- and trans-formic acid in solid argonJournal of Molecular Spectroscopy, 219
P. Ehrenfreund, W. Schutte (2000)
ISO observations of interstellar ices: Implications for the pristinity of cometsAdvances in Space Research, 25
J. Bertie, K. Michaelian, H. Eysel, D. Hager (1986)
The Raman‐active O–H and O–D stretching vibrations and Raman spectra of gaseous formic acid‐d1 and ‐ODJournal of Chemical Physics, 85
Jobin Cyriac, T. Pradeep (2005)
Structural transformation in formic acid on ultra cold ice surfacesChemical Physics Letters, 402
D. Andrade, M. Rocco, H. Boechat-Roberty, P. Iza, R. Martinez, M. Homem, Ê. Silveira (2007)
Plasma Desorption Mass Spectrometry analysis of HCOOH iceJournal of Electron Spectroscopy and Related Phenomena, 155
M. Godard, G. Féraud, M. Chabot, Y. Carpentier, T. Pino, R. Brunetto, J. Duprat, C. Engrand, P. Bréchignac, L. D'hendecourt, E. Dartois (2011)
Ion irradiation of carbonaceous interstellar analogues - Effects of cosmic rays on the 3.4 μm interstellar absorption bandAstronomy and Astrophysics, 529
É. Zins, P. Joshi, L. Krim (2011)
Production and isolation of OH radicals in water iceMonthly Notices of the Royal Astronomical Society, 415
R. Milburn, H. Taube (1959)
Tracer Experiments on the Oxidation of Oxalic AcidJournal of the American Chemical Society, 81
S. Pilling, E. Duarte, A. Domaracka, H. Rothard, P. Boduch, E. Silveira (2011)
Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.Physical chemistry chemical physics : PCCP, 13 35
S. Leach, M. Schwell, F. Dulieu, J. Chotin, H. Jochims, Helmut rtel (2002)
Photophysical studies of formic acid in the VUV. Absorption spectrum in the 6???22 eV regionPresented at the Second International Meeting on Photodynamics, Havana, Cuba, February 10???16, 2002.Physical Chemistry Chemical Physics, 4
E. Duarte, P. Boduch, H. Rothard, T. Been, E. Dartois, L. Farenzena, Ê. Silveira (2009)
Heavy ion irradiation of condensed CO2: sputtering and molecule formationAstronomy and Astrophysics, 502
J. Crovisier, D. Bockelée-Morvan, P. Colom, N. Biver, D. Despois, D. Lis (2004)
The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy
I. Reva, A. Plokhotnichenko, E. Radchenko, G. Sheina, Y. Blagoǐ (1994)
The IR spectrum of formic acid in an argon matrixSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 50
R. Millikan, K. Pitzer (1958)
The Infrared Spectra of Dimeric and Crystalline Formic AcidJournal of the American Chemical Society, 80
R. Guillemin, W. Stolte, D. Lindle (2009)
Fragmentation of formic acid following photoexcitation around the carbon K edgeJournal of Physics B: Atomic, Molecular and Optical Physics, 42
I. Martín, T. Skalický, J. Langer, H. Abdoul-Carime, G. Karwasz, E. Illenberger, M. Staňo, Š. Matejčík (2005)
Low energy electron driven reactions in single formic acid molecules (HCOOH) and their homogeneous clusters.Physical chemistry chemical physics : PCCP, 7 10
A. Barros, A. Domaracka, D. Andrade, P. Boduch, H. Rothard, Ê. Silveira (2011)
Radiolysis of frozen methanol by heavy cosmic ray and energetic solar particle analoguesMonthly Notices of the Royal Astronomical Society, 418
S. Pilling, A. Santos, H. Boechat-Roberty, G. Souza, M. Santanna, A. Barros, W. Wolff, N. Faria (2006)
Ionization and Dissociation of the Formic acid Molecule By Protons and ElectronsBrazilian Journal of Physics, 36
H. Boechat-Roberty, S. Pilling, A. OV-UFRJ, IQ-UFRJ, IF-UFRJ (2005)
Destruction of formic acid by soft X-rays in star-forming regionsAstronomy and Astrophysics, 438
S. Sandford, L. Allamandola (1990)
The physical and infrared spectral properties of CO2 in astrophysical ice analogs.The Astrophysical journal, 355 1
S. Pilling, L. Baptista, H. Boechat-Roberty, D. Andrade (2011)
Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.Astrobiology, 11 9
A. Ferreira-Rodrigues, M. Homem, A. Brito, C. Ponciano, Ê. Silveira (2011)
Photostability of amino acids to Lyman α radiation: GlycineInternational Journal of Mass Spectrometry, 306
P. Ehrenfreund, S. Charnley, O. Botta (2005)
A voyage from dark clouds to the early Earth, 16
S. Pilling, A. Santos, W. Wolff, M. Sant'Anna, A. Barros, G. Souza, N. Faria, H. Boechat-Roberty (2006)
Ionization and dissociation of cometary gaseous organic molecules by solar wind particles ¿ I. Formic acidMonthly Notices of the Royal Astronomical Society, 372
R. Millikan, K. Pitzer (1957)
Infrared Spectra and Vibrational Assignment of Monomeric Formic AcidJournal of Chemical Physics, 27
We studied the effects produced by the interaction of heavy ion cosmic rays with interstellar and cometary organic molecules in the solid phase. Formic acid (HCOOH) ice at 15 K was irradiated by 267-MeV 56Fe22 ions and the chemical evolution was analysed using Fourier transform infrared spectroscopy. The destruction cross-section of HCOOH and the formation cross-sections of the produced molecular species have been determined; the sputtering yield values are also discussed. The most abundant chemical species formed by Fe ion irradiation are CO, CO2 and H2O. The half-life of frozen formic acid molecules in the interstellar medium, as a result of interaction with the different cosmic ray constituents, is evaluated to be 108 yr, considering that the destruction cross-section d of heavy ions is ruled by a power law as a function of the electronic stopping power Se (i.e. d S3/2e). Moreover, a complementary study based on mass spectrometry data from the literature has been performed, in order to understand the HCOOH molecule radiolysis, the desorption of its product and the chemical reaction pathways in ice.
Monthly Notices of the Royal Astronomical Society – Oxford University Press
Published: Apr 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.