Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions.

Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical Chemistry Pubmed

Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions.

Analytical Chemistry , Volume 86 (4): -1992 – Aug 26, 2014

Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions.


Abstract

Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution.

Loading next page...
 
/lp/pubmed/logic-control-of-enzyme-like-gold-nanoparticles-for-selective-WmMflVj167

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0003-2700
DOI
10.1021/ac4036789
pmid
24451013

Abstract

Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution.

Journal

Analytical ChemistryPubmed

Published: Aug 26, 2014

There are no references for this article.