Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Berbari, A. O’Connor, C. Haycraft, B. Yoder (2009)
The Primary Cilium as a Complex Signaling CenterCurrent Biology, 19
Andrew Tai, J. Chuang, C. Bode, U. Wolfrum, C. Sung (1999)
Rhodopsin’s Carboxy-Terminal Cytoplasmic Tail Acts as a Membrane Receptor for Cytoplasmic Dynein by Binding to the Dynein Light Chain Tctex-1Cell, 97
Agata Jurczyk, Adam Gromley, S. Redick, J. Agustin, G. Witman, G. Pazour, D. Peters, S. Doxsey (2004)
Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assemblyThe Journal of Cell Biology, 166
H. Kremer, E. Wijk, Tina Märker, U. Wolfrum, R. Roepman (2006)
Usher syndrome: molecular links of pathogenesis, proteins and pathways.Human molecular genetics, 15 Spec No 2
José Badano, N. Mitsuma, P. Beales, N. Katsanis (2006)
The ciliopathies: an emerging class of human genetic disorders.Annual review of genomics and human genetics, 7
R. Roepman, U. Wolfrum (2007)
Protein networks and complexes in photoreceptor cilia.Sub-cellular biochemistry, 43
H. Khanna, T. Hurd, C. Lillo, X. Shu, S. Parapuram, Shirley He, M. Akimoto, A. Wright, B. Margolis, David Williams, A. Swaroop (2005)
RPGR-ORF15, Which Is Mutated in Retinitis Pigmentosa, Associates with SMC1, SMC3, and Microtubule Transport Proteins*Journal of Biological Chemistry, 280
A. Wright, C. Chakarova, M. El-aziz, S. Bhattacharya (2010)
Photoreceptor degeneration: genetic and mechanistic dissection of a complex traitNature Reviews Genetics, 11
(2010)
Protein networks related to the Usher syndrome gain insights in the molecular basis of the disease
P. Haluska, A. Saleem, Z. Rasheed, Farheena Ahmed, Emily Su, Leroy Liu, E. Rubin (1999)
Interaction between human topoisomerase I and a novel RING finger/arginine-serine protein.Nucleic acids research, 27 12
Z. Rasheed, A. Saleem, Y. Ravee, P. Pandolfi, E. Rubin (2002)
The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies.Experimental cell research, 277 2
D. Signor, K. Wedaman, Jose Orozco, N. Dwyer, Cori Bargmann, L. Rose, J. Scholey (1999)
Role of a Class Dhc1b Dynein in Retrograde Transport of Ift Motors and Ift Raft Particles along Cilia, but Not Dendrites, in Chemosensory Neurons of Living Caenorhabditis elegansThe Journal of Cell Biology, 147
Exp. Cell Res
S. Weger, E. Hammer, M. Engstler (2003)
The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation.Experimental cell research, 290 1
Tina Sedmak, U. Wolfrum (2010)
Intraflagellar transport molecules in ciliary and nonciliary cells of the retinaThe Journal of Cell Biology, 189
(2004)
Ann. Rev. Cell Dev. Biol
Atsushi Mikami, Sharon Tynan, Taro Hama, K. Luby‐Phelps, Tetsuichiro Saito, J. Crandall, J. Besharse, R. Vallee (2002)
Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cellsJournal of Cell Science, 115
B. Chang, H. Khanna, N. Hawes, D. Jimeno, Shirley He, C. Lillo, S. Parapuram, Hong Cheng, A. Scott, R. Hurd, J. Sayer, E. Otto, M. Attanasio, John O'Toole, Geng-lin Jin, C. Shou, F. Hildebrandt, David Williams, J. Heckenlively, A. Swaroop (2006)
In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse.Human molecular genetics, 15 11
G. Pazour, S. Baker, J. Deane, D. Cole, B. Dickert, J. Rosenbaum, G. Witman, J. Besharse (2002)
The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenanceThe Journal of Cell Biology, 157
A. Ghosh, C. Murga-Zamalloa, L. Chan, P. Hitchcock, A. Swaroop, H. Khanna (2010)
Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development.Human molecular genetics, 19 1
F. Renner, R. Moreno, M. Schmitz (2010)
SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death.Molecular cell, 37 4
W. Wigley, R. Fabunmi, Min Lee, C. Marino, S. Muallem, G. Demartino, P. Thomas (1999)
Dynamic Association of Proteasomal Machinery with the CentrosomeThe Journal of Cell Biology, 145
L. Tsvetkov, Xingzhi Xu, Jia Li, D. Stern (2003)
Polo-like Kinase 1 and Chk2 Interact and Co-localize to Centrosomes and the Midbody*The Journal of Biological Chemistry, 278
H. Khanna, E. Davis, C. Murga-Zamalloa, A. Estrada, I. Lopez, A. Hollander, Marijke Zonneveld, M. Othman, N. Waseem, C. Chakarova, C. Maubaret, A. Díaz-Font, I. MacDonald, D. Muzny, D. Wheeler, M. Morgan, L. Lewis, C. Logan, P. Tan, Michael Beer, C. Inglehearn, R. Lewis, S. Jacobson, C. Bergmann, P. Beales, T. Attié-Bitach, Colin Johnson, E. Otto, S. Bhattacharya, F. Hildebrandt, R. Gibbs, R. Koenekoop, A. Swaroop, N. Katsanis (2009)
A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathiesNature genetics, 41
J. Reiners, K. Nagel-Wolfrum, Karin Jürgens, Tina Märker, U. Wolfrum (2006)
Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease.Experimental eye research, 83 1
T. Furukawa, E. Morrow, Tiansen Li, F. Davis, C. Cepko (1999)
Retinopathy and attenuated circadian entrainment in Crx-deficient miceNature Genetics, 23
C. Neumann, C. Nuesslein-Volhard (2000)
Patterning of the zebrafish retina by a wave of sonic hedgehog activity.Science, 289 5487
T. Maerker, E. Wijk, N. Overlack, Ferry Kersten, J. McGee, T. Goldmann, E. Sehn, R. Roepman, E. Walsh, H. Kremer, U. Wolfrum (2008)
A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.Human molecular genetics, 17 1
J. Besharse, S. Baker, K. Luby‐Phelps, G. Pazour (2003)
Photoreceptor intersegmental transport and retinal degeneration: a conserved pathway common to motile and sensory cilia.Advances in experimental medicine and biology, 533
Schroer (2004)
DynactinAnn. Rev. Cell Dev. Biol., 20
D. Papermaster (2002)
The birth and death of photoreceptors: the Friedenwald Lecture.Investigative ophthalmology & visual science, 43 5
C. Horst, Lincoln Johnson, J. Besharse, J. Besharse (1990)
Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope.Cell motility and the cytoskeleton, 17 4
E. Vithana, L. Abu-Safieh, M. Allen, A. Carey, M. Papaioannou, C. Chakarova, M. Al-Maghtheh, N. Ebenezer, C. Willis, A. Moore, A. Moore, A. Bird, A. Bird, D. Hunt, S. Bhattacharya (2001)
A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11).Molecular cell, 8 2
M. Nachury, A. Loktev, Qihong Zhang, Christopher Westlake, J. Peränen, A. Merdes, D. Slusarski, R. Scheller, J. Bazan, V. Sheffield, Peter Jackson (2007)
A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane BiogenesisCell, 129
Qian Wang, Junmin Pan, W. Snell (2006)
Intraflagellar Transport Particles Participate Directly in Cilium-Generated Signaling in ChlamydomonasCell, 125
S. Bowne, L. Sullivan, Anisa Gire, D. Birch, D. Hughbanks-Wheaton, J. Heckenlively, S. Daiger (2008)
Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosaMolecular Vision, 14
E. Valente, J. Silhavy, F. Brancati, Giuseppe Barrano, S. Krishnaswami, M. Castori, Madeline Lancaster, E. Boltshauser, L. Boccone, L. Al-Gazali, E. Fazzi, S. Signorini, Carrie Louie, E. Bellacchio, International Group, E. Bertini, B. Dallapiccola, J. Gleeson (2006)
Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndromeNature Genetics, 38
K. Selmer, J. Grøndahl, R. Riise, K. Brandal, Ø. Braaten, R. Bragadóttir, D. Undlien (2009)
Autosomal dominant pericentral retinal dystrophy caused by a novel missense mutation in the TOPORS geneActa Ophthalmologica, 88
E. Otto, B. Loeys, H. Khanna, J. Hellemans, R. Sudbrak, Shuling Fan, Ulla Muerb, John O'Toole, Juliana Helou, M. Attanasio, B. Utsch, J. Sayer, C. Lillo, D. Jimeno, P. Coucke, A. Paepe, R. Reinhardt, S. Klages, M. Tsuda, I. Kawakami, T. Kusakabe, H. Omran, A. Imm, Melissa Tippens, P. Raymond, Josephine Hill, P. Beales, Shirley He, A. Kispert, B. Margolis, David Williams, A. Swaroop, F. Hildebrandt (2005)
Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulinNature Genetics, 37
D. Hong, B. Pawlyk, M. Sokolov, K. Strissel, Jun Yang, B. Tulloch, A. Wright, V. Arshavsky, Tiansen Li (2003)
RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia.Investigative ophthalmology & visual science, 44 6
R. Zhou, H. Wen, S. Ao (1999)
Identification of a novel gene encoding a p53-associated protein.Gene, 235 1-2
U. Smith, Mark Consugar, L. Tee, B. McKee, E. Maina, Shelly Whelan, N. Morgan, Erin Goranson, P. Gissen, P. Gissen, Stacie Lilliquist, I. Aligianis, C. Ward, S. Pasha, Rachaneekorn Punyashthiti, S. Sharif, P. Batman, C. Bennett, C. Woods, C. Mckeown, M. Bucourt, Caroline Miller, P. Cox, L. Al-Gazali, R. Trembath, V. Torres, T. Attié-Bitach, D. Kelly, E. Maher, V. Gattone, P. Harris, Colin Johnson (2006)
The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk ratNature Genetics, 38
Philipp Trojan, N. Krauß, H. Choe, A. Giessl, A. Pulvermüller, U. Wolfrum (2008)
Centrins in retinal photoreceptor cells: Regulators in the connecting ciliumProgress in Retinal and Eye Research, 27
Hartong (2006)
Retinitis pigmentosaLancet, 368
A. Giessl, A. Pulvermüller, Philipp Trojan, J. Park, H. Choe, O. Ernst, K. Hofmann, U. Wolfrum (2004)
Differential Expression and Interaction with the Visual G-protein Transducin of Centrin Isoforms in Mammalian Photoreceptor Cells*Journal of Biological Chemistry, 279
Christine Insinna, J. Besharse (2008)
Intraflagellar transport and the sensory outer segment of vertebrate photoreceptorsDevelopmental Dynamics, 237
C. Rivolta, D. Sharon, M. DeAngelis, T. Dryja (2002)
Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns.Human molecular genetics, 11 10
S. Okabe, Y. Shiomura, N. Hirokawa (1989)
Immunocytochemical localization of microtubule-associated proteins 1A and 2 in the rat retinaBrain Research, 483
C. Chakarova, M. Papaioannou, H. Khanna, I. Lopez, N. Waseem, Amna Shah, T. Theis, J. Friedman, C. Maubaret, K. Bujakowska, Brotati Veraitch, M. El-Aziz, DeQuincy Prescott, S. Parapuram, W. Bickmore, Peter Munro, A. Gal, C. Hamel, V. Marigo, C. Ponting, B. Wissinger, E. Zrenner, K. Matter, A. Swaroop, R. Koenekoop, S. Bhattacharya (2007)
Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy.American journal of human genetics, 81 5
Qin Liu, Jie Zhou, S. Daiger, D. Farber, J. Heckenlively, Julie Smith, L. Sullivan, J. Zuo, A. Milam, E. Pierce (2002)
Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors.Investigative ophthalmology & visual science, 43 1
J. Gerdes, Yangfan Liu, N. Zaghloul, C. Leitch, Shaneka Lawson, Masaki Kato, P. Beachy, P. Beales, G. Demartino, S. Fisher, José Badano, N. Katsanis (2007)
Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt responseNature Genetics, 39
Rajeev Rajendra, Diptee Malegaonkar, Pooja Pungaliya, Henderson Marshall, Z. Rasheed, J. Brownell, Leroy Liu, S. Lutzker, A. Saleem, E. Rubin (2004)
Topors Functions as an E3 Ubiquitin Ligase with Specific E2 Enzymes and Ubiquitinates p53*Journal of Biological Chemistry, 279
Nat. Rev. Genet
We recently reported that mutations in the widely expressed nuclear protein TOPORS (topoisomerase I-binding arginine/serine rich) are associated with autosomal dominant retinal degeneration. However, the precise localization and a functional role of TOPORS in the retina remain unknown. Here, we demonstrate that TOPORS is a novel component of the photoreceptor sensory cilium, which is a modified primary cilium involved with polarized trafficking of proteins. In photoreceptors, TOPORS localizes primarily to the basal bodies of connecting cilium and in the centrosomes of cultured cells. Morpholino-mediated silencing of topors in zebrafish embryos demonstrates in another species a comparable retinal problem as seen in humans, resulting in defective retinal development and failure to form outer segments. These defects can be rescued by mRNA encoding human TOPORS. Taken together, our data suggest that TOPORS may play a key role in regulating primary cilia-dependent photoreceptor development and function. Additionally, it is well known that mutations in other ciliary proteins cause retinal degeneration, which may explain why mutations in TOPORS result in the same phenotype.
Human Molecular Genetics – Oxford University Press
Published: Mar 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.