Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Downloaded from genesdev.cshlp.org on November 1, 2021 - Published by Cold Spring Harbor Laboratory Press Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation 1 2 1 1 Richard L. Frock, Brian A. Kudlow, Angela M. Evans, Samantha A. Jameson, 1,3,4 1,3,5 Stephen D. Hauschka, and Brian K. Kennedy 1 2 Department of Biochemistry, Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA Mutations within LMNA, encoding A-type nuclear lamins, are associated with multiple tissue-specific diseases, including Emery-Dreifuss (EDMD2/3) and Limb-Girdle muscular dystrophy (LGMD1B). X-linked EDMD results from mutations in emerin, a lamin A-associated protein. The mechanisms through which these mutations cause muscular dystrophy are not understood. Here we show that most, but not all, cultured muscle cells from lamin A/C knockout mice exhibit impaired differentiation kinetics and reduced differentiation potential. Similarly, normal muscle cells that have been RNA interference (RNAi) down-regulated for either A-type lamins or emerin have impaired differentiation potentials. Replicative myoblasts lacking A-type lamins or emerin also have decreased levels of proteins important for muscle differentiation including pRB, MyoD, desmin, and M-cadherin; up-regulated Myf5; but no changes in Pax3, Pax7, MEF2C, MEF2D, c-met, and -catenin. To determine whether impaired myogenesis
Genes & Development – Unpaywall
Published: Feb 15, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.