Access the full text.
Sign up today, get DeepDyve free for 14 days.
Janghoon Park, Woong-Sup Park, Jong-Hun Kim, Dongjo Ryoo, Hoon-sik Kim, Y. Jeong, Dong‐Won Kim, Sang‐young Lee (2011)
Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-pThe Lancet
Emi Ukaji, T. Furusawa, Masahide Sato, N. Suzuki (2007)
The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filterApplied Surface Science, 254
K. Shaju, G. Rao, B. Chowdari (2003)
EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3)Electrochimica Acta, 48
M. Levi, G. Salitra, B. Markovsky, Hanan Teller, D. Aurbach, U. Heider, L. Heider (1999)
Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EISJournal of The Electrochemical Society, 146
Kwang Kim, N. Park, K. Ryu, S. Chang (2002)
Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticlesPolymer, 43
Xiufang Wen, Kunchan Wang, P. Pi, Jinxin Yang, Zhi-qi Cai, Lijuan Zhang, Y. Qian, Zhuo-ru Yang, D. Zheng, Jiang Cheng (2011)
Organic–inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol–gel derived materials in emulsionApplied Surface Science, 258
A. Stephan, K. Nahm (2006)
Review on composite polymer electrolytes for lithium batteriesPolymer, 47
A. Yuwono, B. Liu, J. Xue, John Wang, Hendry. Elim, W. Ji, Ying Li, T. White (2004)
Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybridsJournal of Materials Chemistry, 14
Changyu Tang, Ken Hackenberg, Q. Fu, P. Ajayan, H. Ardebili (2012)
High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.Nano letters, 12 3
Lan Zhang, Shichao Zhang (2008)
Preparation and characterization of gel polymer electrolytes based on acrylonitrile–methoxy polyethylene glycol (350) monoacrylate–lithium acrylate terpolymersElectrochimica Acta, 54
W. Pu, Xiangming He, Li Wang, Zheng Tian, Changyin Jiang, C. Wan (2008)
Preparation of P(AN-MMA) gel electrolyte for Li-ion batteriesIonics, 14
V. Ginzburg (2005)
Influence of Nanoparticles on Miscibility of Polymer Blends. A Simple TheoryMacromolecules, 38
Li Wang, Ning Li, Xiangming He, C. Wan, Changyin Jiang (2012)
Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteriesElectrochimica Acta, 68
W. Pu, Xiangming He, Li Wang, Changyin Jiang, C. Wan (2006)
Preparation of PVDF¿HFP microporous membrane for Li-ion batteries by phase inversionJournal of Membrane Science, 272
Yoon-sung Lee, S. Ju, Jae-Hong Kim, Seunghae Hwang, Jae-man Choi, Yang‐Kook Sun, Hansu Kim, B. Scrosati, Dong‐Won Kim (2012)
Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteriesElectrochemistry Communications, 17
Pifu Zhang, Linda Yang, Liang-Chen Li, Maoliang Ding, Yu Wu, R. Holze (2011)
Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolyteFuel and Energy Abstracts
Chun‐Guey Wu, Ming-I. Lu, Chung-Chih Tsai, H. Chuang (2006)
PVdF-HFP/metal oxide nanocomposites: The matrices for high-conducting, low-leakage porous polymer electrolytesJournal of Power Sources, 159
W. Meyer (1998)
Polymer electrolytes for lithium-ion batteries.Advanced materials, 10 6
H. Xiong, Zidong Wang, Dong-Ping Xie, Liang Cheng, Yongyao Xia (2006)
Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteriesJournal of Materials Chemistry, 16
A. Magistris, E. Quartarone, P. Mustarelli, Yuria Saito, H. Kataoka (2002)
PVDF-based porous polymer electrolytes for lithium batteriesSolid State Ionics, 152
W. Wieczorek, J. Stevens, Z. Florjańczyk (1996)
Composite polyether based solid electrolytes. The Lewis acid-base approachSolid State Ionics, 85
Chia-Liang Cheng, C. Wan, Yu-Sheng Wang (2004)
Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteriesJournal of Power Sources, 134
W. Pu, Shichao Zhang, Lan Zhang, Xiangming He, C. Wan, Changyin Jiang (2009)
Preparation and Performance of Novel Acrylonitrile (AN)-based Copolymer Gel Electrolytes for Lithium Ion Batteries, 16
D. Saikia, Ashok Kumar (2004)
Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolytesElectrochimica Acta, 49
Kwang Kim, N. Park, K. Ryu, S. Chang (2006)
Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methodsElectrochimica Acta, 51
Zheng Tian, Xiangming He, W. Pu, C. Wan, Changyin Jiang (2006)
Preparation of poly(acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteriesElectrochimica Acta, 52
Zhijie Li, B. Hou, Yao Xu, Dong Wu, Yuhan Sun, Huazhang Wei, F. Deng (2005)
Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticlesJournal of Solid State Chemistry, 178
N. Idris, Md. Rahman, Jiazhao Wang, Huakun Liu (2012)
Microporous gel polymer electrolytes for lithium rechargeable battery applicationJournal of Power Sources, 201
Xiangming He, Qiao Shi, Xiao Zhou, C. Wan, Changyin Jiang (2005)
In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteriesElectrochimica Acta, 51
M. Mackay, A. Tuteja, P. Duxbury, C Hawker, C Hawker, B. Horn, Z. Guan, Guanghui Chen, R. Krishnan (2006)
General Strategies for Nanoparticle DispersionScience, 311
G. Arrachart, I. Karatchevtseva, A. Heinemann, D. Cassidy, G. Triani (2011)
Synthesis and characterisation of nanocomposite materials prepared by dispersion of functional TiO2 nanoparticles in PMMA matrixJournal of Materials Chemistry, 21
K. Shaju, G. Rao, B. Chowdari (2004)
Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2Journal of The Electrochemical Society, 151
Li Wang, Ning Li, Xiangming He, C. Wan, Changyin Jiang (2012)
In Situ Polymerization of Methoxy Polyethylene Glycol (350) Monoacrylate and Polyethyleneglycol (200) Dimethacrylate Based Solid-State Polymer Electrolyte for Li-Ion BatteriesJournal of The Electrochemical Society, 159
M. Osińska, M. Walkowiak, A. Zalewska, T. Jesionowski (2009)
Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranesJournal of Membrane Science, 326
Long-Hua Lee, Wen‐Chang Chen (2001)
High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)−Titania MaterialsChemistry of Materials, 13
G. Appetecchi, F. Croce, L. Persi, F. Ronci, B. Scrosati (2000)
Transport and interfacial properties of composite polymer electrolytesElectrochimica Acta, 45
F. Croce, G. Appetecchi, L. Persi, B. Scrosati (1998)
Nanocomposite polymer electrolytes for lithium batteriesNature, 394
H. Xiong, Da-Peng Liu, Hao Zhang, Jie‐Sheng Chen (2004)
Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stabilityJournal of Materials Chemistry, 14
F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. Hendrickson (2001)
Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytesElectrochimica Acta, 46
M. Levi, D. Aurbach (1997)
SIMULTANEOUS MEASUREMENTS AND MODELING OF THE ELECTROCHEMICAL IMPEDANCE AND THE CYCLIC VOLTAMMETRIC CHARACTERISTICS OF GRAPHITE ELECTRODES DOPED WITH LITHIUMJournal of Physical Chemistry B, 101
Y. Chen-Yang, H. Chen, F. Lin, C. Liao, T. Chen (2003)
Preparation and conductivity of the composite polymer electrolytes based on poly[bis(methoxyethoxyethoxy)phosphazene], LiClO4 and α-Al2O3Solid State Ionics, 156
S. Khaled, R. Sui, P. Charpentier, A. Rizkalla (2007)
Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent.Langmuir : the ACS journal of surfaces and colloids, 23 7
Yan-Jie Wang, Dukjoon Kim (2007)
Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytesElectrochimica Acta, 52
Nano-sized ceramic fillers provide a promising approach to enhancing polymer electrolytes in terms of the interfacial chemistry, ionic conductivity, and C-rate performance of Li-ion cells, if their dispersibility and compatibility in a polymer matrix can be well managed. In this work, a nano-crystalline TiO2–PMMA hybrid is prepared by in situ crystallization, and its structure and properties are characterized by XRD, FTIR, TG and HRTEM. The enhancements provided by the nano-crystalline TiO2–PMMA hybrid as an additive in a PVDF-HFP (poly(vinylidene fluoride-co-hexafluoropropylene)) based composite polymer electrolyte, including in the pore distribution, electrolyte uptake, ionic conductivity, and electrochemical properties, are confirmed by SEM, linear sweep voltammetry (LSV), charge–discharge cycle testing and AC impedance measurements. The results obtained in this work show that, after the process of annealing, the nano-crystalline TiO2–PMMA hybrid can retain a good dispersibility in PVDF-HFP. Moreover, the nanohybrid doped PVDF-HFP CPE exhibits improved pore distribution, electrolyte uptake and ionic conductivity. Even more importantly, LiCoO2/Li cells with doped CPE exhibit good C-rate performances, which is confirmed by AC impedance results, which show a remarkable enhancement in the interfacial compatibility between the doped CPE and the electrode.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: Apr 23, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.