Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to α-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Cell Biology Springer Journals

The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

Loading next page...
 
/lp/springer-journals/the-polarity-and-dynamics-of-microtubule-assembly-in-the-budding-yeast-W0N6l2Y11b

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2000 by Macmillan Magazines Ltd.
Subject
Life Sciences; Life Sciences, general; Cell Biology; Cancer Research; Developmental Biology; Stem Cells
ISSN
1465-7392
eISSN
1476-4679
DOI
10.1038/71357
Publisher site
See Article on Publisher Site

Abstract

Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to α-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.

Journal

Nature Cell BiologySpringer Journals

Published: Dec 8, 1999

There are no references for this article.