Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Single-cell RNA sequencing of mouse left ventricle reveals cellular diversity and intercommunication

Single-cell RNA sequencing of mouse left ventricle reveals cellular diversity and intercommunication Previous studies have revealed the diversity of the whole cardiac cellulome but not refined the left ventricle, which was essential for finding therapeutic targets. Here, we characterized single-cell transcriptional profiles of the mouse left ventricular cellular landscape using single-cell RNA sequencing (10×Genomics). Detailed t-Distributed Stochastic Neighbor Embedding (tSNE) analysis revealed the cell types of left ventricle with gene markers. Left ventricular cellulome contained cardiomyocytes highly expressed Trdn, endothelial cells highly expressed Pcdh17, fibroblast highly expressed Lama2 and macrophages highly expressed Hpgds, also proved by in situ hybridization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis (ListHits>2, p<0.05) were employed with the DAVID database to investigate subtypes of each cell type with the underlying functions of differentially expressed genes (DEGs). Endothelial cells included five subtypes, fibroblasts comprised of seven subtypes and macrophages contained eleven subtypes. The key representative DEGs (p<0.001) were Gja4 and Gja5 in cluster 3 of endothelial cells, Aqp2 and Thbs4 in cluster 2 of fibroblasts, as well as Clec4e and Trem-1 in in cluster 3 of marcophages perhaps involved in the occur of atherosclerosis, heart failure and acute myocardial infarction proved by literature review. We also revealed extensive networks of intercellular communication in left ventricle. We suggested possible therapeutic targets for cardiovascular disease and autocrine and paracrine signaling underpins left ventricular homeostasis. This study provided new insights into the structure and function of the mammalian left ventricular cellulome and offers an important resource that will stimulate studies in cardiovascular research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological Genomics The American Physiological Society

Single-cell RNA sequencing of mouse left ventricle reveals cellular diversity and intercommunication

Loading next page...
 
/lp/the-american-physiological-society/single-cell-rna-sequencing-of-mouse-left-ventricle-reveals-cellular-Vzd92Iz1xb

References (40)

ISSN
1094-8341
eISSN
1531-2267
DOI
10.1152/physiolgenomics.00016.2021
Publisher site
See Article on Publisher Site

Abstract

Previous studies have revealed the diversity of the whole cardiac cellulome but not refined the left ventricle, which was essential for finding therapeutic targets. Here, we characterized single-cell transcriptional profiles of the mouse left ventricular cellular landscape using single-cell RNA sequencing (10×Genomics). Detailed t-Distributed Stochastic Neighbor Embedding (tSNE) analysis revealed the cell types of left ventricle with gene markers. Left ventricular cellulome contained cardiomyocytes highly expressed Trdn, endothelial cells highly expressed Pcdh17, fibroblast highly expressed Lama2 and macrophages highly expressed Hpgds, also proved by in situ hybridization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis (ListHits>2, p<0.05) were employed with the DAVID database to investigate subtypes of each cell type with the underlying functions of differentially expressed genes (DEGs). Endothelial cells included five subtypes, fibroblasts comprised of seven subtypes and macrophages contained eleven subtypes. The key representative DEGs (p<0.001) were Gja4 and Gja5 in cluster 3 of endothelial cells, Aqp2 and Thbs4 in cluster 2 of fibroblasts, as well as Clec4e and Trem-1 in in cluster 3 of marcophages perhaps involved in the occur of atherosclerosis, heart failure and acute myocardial infarction proved by literature review. We also revealed extensive networks of intercellular communication in left ventricle. We suggested possible therapeutic targets for cardiovascular disease and autocrine and paracrine signaling underpins left ventricular homeostasis. This study provided new insights into the structure and function of the mammalian left ventricular cellulome and offers an important resource that will stimulate studies in cardiovascular research.

Journal

Physiological GenomicsThe American Physiological Society

Published: Jan 1, 2022

There are no references for this article.