Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents.

Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene... Establishing "large-contact-area" interfaces of sensitive nanostructures with microbes and mammalian cells will lead to the development of valuable tools and devices for biodiagnostics and biomedicine. Chemically modified graphene (CMG) nanostructures with their microscale area, sensitive electrical properties, and modifiable chemical functionality are excellent candidates for such biodevices at both biocellular and biomolecular scale. Here, we report on the fabrication and functioning of a novel CMG-based (i) single-bacterium biodevice, (ii) label-free DNA sensor, and (iii) bacterial DNA/protein and polyelectrolyte chemical transistor. The bacteria biodevice was highly sensitive with a single-bacterium attachment generating approximately 1400 charge carriers in a p-type CMG. Similarly, single-stranded DNA tethered on graphene hybridizes with its complementary DNA strand to reversibly increase the hole density by 5.61 x 1012 cm(-2). We further demonstrate (a) a control on the device sensitivity by manipulating surface groups, (b) switching of polarity specificity by changing surface polarity, and (c) a preferential attachment of DNA on thicker CMG surfaces and sharp CMG wrinkles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nano Letters Pubmed

Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents.

Nano Letters , Volume 8 (12): -4392 – Apr 27, 2009

Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents.


Abstract

Establishing "large-contact-area" interfaces of sensitive nanostructures with microbes and mammalian cells will lead to the development of valuable tools and devices for biodiagnostics and biomedicine. Chemically modified graphene (CMG) nanostructures with their microscale area, sensitive electrical properties, and modifiable chemical functionality are excellent candidates for such biodevices at both biocellular and biomolecular scale. Here, we report on the fabrication and functioning of a novel CMG-based (i) single-bacterium biodevice, (ii) label-free DNA sensor, and (iii) bacterial DNA/protein and polyelectrolyte chemical transistor. The bacteria biodevice was highly sensitive with a single-bacterium attachment generating approximately 1400 charge carriers in a p-type CMG. Similarly, single-stranded DNA tethered on graphene hybridizes with its complementary DNA strand to reversibly increase the hole density by 5.61 x 1012 cm(-2). We further demonstrate (a) a control on the device sensitivity by manipulating surface groups, (b) switching of polarity specificity by changing surface polarity, and (c) a preferential attachment of DNA on thicker CMG surfaces and sharp CMG wrinkles.

Loading next page...
 
/lp/pubmed/graphene-based-single-bacterium-resolution-biodevice-and-dna-Vyt0HOLeUr

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1530-6984
DOI
10.1021/nl802412n
pmid
19367973

Abstract

Establishing "large-contact-area" interfaces of sensitive nanostructures with microbes and mammalian cells will lead to the development of valuable tools and devices for biodiagnostics and biomedicine. Chemically modified graphene (CMG) nanostructures with their microscale area, sensitive electrical properties, and modifiable chemical functionality are excellent candidates for such biodevices at both biocellular and biomolecular scale. Here, we report on the fabrication and functioning of a novel CMG-based (i) single-bacterium biodevice, (ii) label-free DNA sensor, and (iii) bacterial DNA/protein and polyelectrolyte chemical transistor. The bacteria biodevice was highly sensitive with a single-bacterium attachment generating approximately 1400 charge carriers in a p-type CMG. Similarly, single-stranded DNA tethered on graphene hybridizes with its complementary DNA strand to reversibly increase the hole density by 5.61 x 1012 cm(-2). We further demonstrate (a) a control on the device sensitivity by manipulating surface groups, (b) switching of polarity specificity by changing surface polarity, and (c) a preferential attachment of DNA on thicker CMG surfaces and sharp CMG wrinkles.

Journal

Nano LettersPubmed

Published: Apr 27, 2009

There are no references for this article.