Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasion-associated proteases in cultured malignant cells.

1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasion-associated proteases... Vitamin D and its derivatives (deltanoids) are potent regulators of cell proliferation and differentiation. Targeted production of proteolytic enzymes like serine proteases and metalloproteinases is an important part of the invasive process of cancer cells. Treatment with 1 alpha25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] decreases the invasive properties of breast carcinoma cells. Here we have analyzed the effects of 1alpha,25(OH)2D3 and its synthetic analogues on the secretion and cell surface association of the components of the plasminogen activator (PA) system and on the secretion of certain matrix metalloproteinases (MMPs) and their inhibitors in MDA-MB-231 breast carcinoma cells. Deltanoids were able to decrease the secretion of urokinase PA and tissue-type PA activity in a dose-dependent manner and to increase PA inhibitor 1 secretion, leading to reduced total PA activity. CB1093 was the most potent analogue, effective at concentrations several logarithms lower than 1alpha,25(OH)2D3. Transient transfection of different urokinase PA promoter reporter constructs to HT-1080 fibrosarcoma indicator cells indicated that vitamin D-responsive sequences were located between nucleotides -2350 and -1870 in the 5' region of the promoter. Treatment of MDA-MB-231 cells with 1alpha,25(OH)2D3 or other deltanoids also resulted in decreased MMP-9 levels in association with increased tissue inhibitor of MMP 1 activity. Membrane-type 1-MMP expression or proteolytic processing were not appreciably affected by deltanoids. Vitamin D and its analogues caused a decrease in Matrigel invasion assays of MDA-MB-231 cells. Cancer cell invasion is associated with coordinated secretion of proteolytic enzymes and their inhibitors. Vitamin D and its derivatives can evidently influence invasive processes by two means: (a) decreasing the expression and activity of cell invasion-associated serine proteases and metalloproteinases; and (b) inducing their inhibitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research Pubmed

1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasion-associated proteases in cultured malignant cells.

Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research , Volume 11 (4): -211 – Jun 9, 2000

1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasion-associated proteases in cultured malignant cells.


Abstract

Vitamin D and its derivatives (deltanoids) are potent regulators of cell proliferation and differentiation. Targeted production of proteolytic enzymes like serine proteases and metalloproteinases is an important part of the invasive process of cancer cells. Treatment with 1 alpha25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] decreases the invasive properties of breast carcinoma cells. Here we have analyzed the effects of 1alpha,25(OH)2D3 and its synthetic analogues on the secretion and cell surface association of the components of the plasminogen activator (PA) system and on the secretion of certain matrix metalloproteinases (MMPs) and their inhibitors in MDA-MB-231 breast carcinoma cells. Deltanoids were able to decrease the secretion of urokinase PA and tissue-type PA activity in a dose-dependent manner and to increase PA inhibitor 1 secretion, leading to reduced total PA activity. CB1093 was the most potent analogue, effective at concentrations several logarithms lower than 1alpha,25(OH)2D3. Transient transfection of different urokinase PA promoter reporter constructs to HT-1080 fibrosarcoma indicator cells indicated that vitamin D-responsive sequences were located between nucleotides -2350 and -1870 in the 5' region of the promoter. Treatment of MDA-MB-231 cells with 1alpha,25(OH)2D3 or other deltanoids also resulted in decreased MMP-9 levels in association with increased tissue inhibitor of MMP 1 activity. Membrane-type 1-MMP expression or proteolytic processing were not appreciably affected by deltanoids. Vitamin D and its analogues caused a decrease in Matrigel invasion assays of MDA-MB-231 cells. Cancer cell invasion is associated with coordinated secretion of proteolytic enzymes and their inhibitors. Vitamin D and its derivatives can evidently influence invasive processes by two means: (a) decreasing the expression and activity of cell invasion-associated serine proteases and metalloproteinases; and (b) inducing their inhibitors.

Loading next page...
 
/lp/pubmed/1alpha-25-dihydroxyvitamin-d3-and-its-analogues-down-regulate-cell-VqswSd0kB4

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1044-9523
pmid
10775039

Abstract

Vitamin D and its derivatives (deltanoids) are potent regulators of cell proliferation and differentiation. Targeted production of proteolytic enzymes like serine proteases and metalloproteinases is an important part of the invasive process of cancer cells. Treatment with 1 alpha25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] decreases the invasive properties of breast carcinoma cells. Here we have analyzed the effects of 1alpha,25(OH)2D3 and its synthetic analogues on the secretion and cell surface association of the components of the plasminogen activator (PA) system and on the secretion of certain matrix metalloproteinases (MMPs) and their inhibitors in MDA-MB-231 breast carcinoma cells. Deltanoids were able to decrease the secretion of urokinase PA and tissue-type PA activity in a dose-dependent manner and to increase PA inhibitor 1 secretion, leading to reduced total PA activity. CB1093 was the most potent analogue, effective at concentrations several logarithms lower than 1alpha,25(OH)2D3. Transient transfection of different urokinase PA promoter reporter constructs to HT-1080 fibrosarcoma indicator cells indicated that vitamin D-responsive sequences were located between nucleotides -2350 and -1870 in the 5' region of the promoter. Treatment of MDA-MB-231 cells with 1alpha,25(OH)2D3 or other deltanoids also resulted in decreased MMP-9 levels in association with increased tissue inhibitor of MMP 1 activity. Membrane-type 1-MMP expression or proteolytic processing were not appreciably affected by deltanoids. Vitamin D and its analogues caused a decrease in Matrigel invasion assays of MDA-MB-231 cells. Cancer cell invasion is associated with coordinated secretion of proteolytic enzymes and their inhibitors. Vitamin D and its derivatives can evidently influence invasive processes by two means: (a) decreasing the expression and activity of cell invasion-associated serine proteases and metalloproteinases; and (b) inducing their inhibitors.

Journal

Cell growth & differentiation : the molecular biology journal of the American Association for Cancer ResearchPubmed

Published: Jun 9, 2000

There are no references for this article.