Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Eperon, V. Burlakov, P. Docampo, A. Goriely, H. Snaith (2014)
Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar CellsAdvanced Functional Materials, 24
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
Wei Leong, Gregory Welch, J. Seifter, J. Seo, G. Bazan, A. Heeger (2013)
Understanding the Role of Thermal Processing in High Performance Solution Processed Small Molecule Bulk Heterojunction Solar CellsAdvanced Energy Materials, 3
T. Sum, N. Mathews (2014)
Advancements in perovskite solar cells: photophysics behind the photovoltaicsEnergy and Environmental Science, 7
Amalie Dualeh, N. Tétreault, T. Moehl, P. Gao, M. Nazeeruddin, M. Grätzel (2014)
Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar CellsAdvanced Functional Materials, 24
S. Aharon, B. Cohen, L. Etgar (2014)
Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar CellJournal of Physical Chemistry C, 118
(2014)
Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers
E. Mosconi, A. Amat, Md. Nazeeruddin, M. Grätzel, F. Angelis (2013)
First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic ApplicationsJournal of Physical Chemistry C, 117
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
Yixin Zhao, A. Nardes, K. Zhu (2014)
Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length.The journal of physical chemistry letters, 5 3
Yixin Zhao, K. Zhu (2013)
Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar CellsJournal of Physical Chemistry Letters, 4
A. Abate, Michael Saliba, Derek Hollman, S. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H. Snaith (2014)
Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells.Nano letters, 14 6
C. Kagan, D. Mitzi, C. Dimitrakopoulos (1999)
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistorsScience, 286 5441
Chuantian Zuo, Liming Ding (2014)
An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive.Nanoscale, 6 17
B. Cohen, Shany Gamliel, L. Etgar (2014)
Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cellsAPL Materials, 2
N. Pellet, P. Gao, G. Gregori, Tae-Youl Yang, M. Nazeeruddin, J. Maier, M. Grätzel (2014)
Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 53 12
Kangning Liang, and Mitzi, Michael Prikas (1998)
Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping TechniqueChemistry of Materials, 10
Jiangjian Shi, Juan Dong, Songtao Lv, Yuzhuan Xu, Lifeng Zhu, Junyan Xiao, Xin Xu, Huijue Wu, Dongmei Li, Yanhong Luo, Q. Meng (2014)
Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction propertyApplied Physics Letters, 104
Waleed Laban, L. Etgar (2013)
Depleted hole conductor-free lead halide iodide heterojunction solar cellsEnergy and Environmental Science, 6
T. Leijtens, S. Stranks, G. Eperon, R. Lindblad, E. Johansson, I. McPherson, H. Rensmo, J. Ball, Michael Lee, H. Snaith (2014)
Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility.ACS nano, 8 7
Dongqin Bi, S. Moon, Leif Häggman, G. Boschloo, Lei Yang, E. Johansson, M. Nazeeruddin, M. Grätzel, A. Hagfeldt (2013)
Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructuresRSC Advances, 3
Thidarat Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, T. Dittrich (2013)
Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layersApplied Physics Letters, 103
I. Borriello, G. Cantele, D. Ninno (2008)
Ab initio investigation of hybrid organic-inorganic perovskites based on tin halidesPhysical Review B, 77
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
G. Eperon, V. Burlakov, A. Goriely, H. Snaith (2014)
Neutral color semitransparent microstructured perovskite solar cells.ACS nano, 8 1
L. Etgar, P. Gao, Z. Xue, Qin Peng, A. Chandiran, B. Liu, Md. Nazeeruddin, M. Grätzel (2012)
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 134 42
L. Kronik, Y. Shapira (2001)
Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineeringSurface and Interface Analysis, 31
L. Peter, K. Wijayantha (2000)
Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cellsElectrochimica Acta, 45
Jianhang Qiu, Yongcai Qiu, Keyou Yan, Min Zhong, Cheng Mu, H. Yan, Shihe Yang (2013)
All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays.Nanoscale, 5 8
A. Frank, N. Kopidakis, J. Lagemaat (2004)
Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic propertiesCoordination Chemistry Reviews, 248
Lee Barnea-Nehoshtan, Saar Kirmayer, E. Edri, G. Hodes, D. Cahen (2014)
Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells.The journal of physical chemistry letters, 5 14
J. Noh, S. Im, J. Heo, T. Mandal, S. Seok (2013)
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano letters, 13 4
A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka (2012)
Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina MediaChemistry Letters, 41
F. Deschler, Michael Price, Sandeep Pathak, L. Klintberg, David-Dominik Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. Stranks, H. Snaith, M. Atatüre, R. Phillips, R. Friend (2014)
High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors.The journal of physical chemistry letters, 5 8
D. Mitzi, C. Feild, Z. Schlesinger, R. Laibowitz (1995)
Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3IEEE Journal of Solid-state Circuits, 114
S. Pang, Hao Hu, Jiliang Zhang, S. Lv, Yaming Yu, Feng Wei, Tian-shi Qin, Hongxia Xu, Zhihong Liu, G. Cui (2014)
NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar CellsChemistry of Materials, 26
W. Shockley, H. Queisser (1961)
Detailed Balance Limit of Efficiency of p‐n Junction Solar CellsJournal of Applied Physics, 32
A. Usami, S. Seki, Y. Mita, Hiromu Kobayashi, H. Miyashiro, N. Terada (2009)
Temperature dependence of open-circuit voltage in dye-sensitized solar cellsSolar Energy Materials and Solar Cells, 93
K. Zhu, Song-Rim Jang, A. Frank (2011)
Impact of High Charge-Collection Efficiencies and Dark Energy-Loss Processes on Transport, Recombination, and Photovoltaic Properties of Dye-Sensitized Solar CellsJournal of Physical Chemistry Letters, 2
S. Lv, S. Pang, Yuanyuan Zhou, N. Padture, Hao Hu, Li Wang, Xin-hong Zhou, Huimin Zhu, Lixue Zhang, Changshui Huang, G. Cui (2014)
One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Cl(x)) for mesoscopic perovskite-polymer solar cells.Physical chemistry chemical physics : PCCP, 16 36
D. Nanova, A. Kast, M. Pfannmöller, C. Müller, L. Veith, I. Wacker, M. Agari, W. Hermes, P. Erk, W. Kowalsky, R. Schröder, R. Lovrinčić (2014)
Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance.Nano letters, 14 5
Organometal halide perovskite is a promising material in photovoltaic (PV) cells. Within a short time, its performance has increased dramatically to become a real competitor to silicon solar cells. Here we report on the temperature dependence (annealing temperature and the dependence of the photovoltaic parameters on temperature) of formamidinium (FA) lead iodide (FAPbI3), methylammonium (MA) lead iodide (MAPbI3) and their mixture (MAPbI3 : FAPbI3) in hole conductor free perovskite solar cells. These three types of perovskites function both as light harvesters and as hole conductors. Surface photovoltage and optical characterization reveal the p-type behavior and the band gap of the different perovskites. We observed that the ratio between the MA and FA cations might change during the annealing process, affecting the band gap and the stability of the layers. The PV parameters at different temperatures show better stability for the pure MAPbI3 and FAPbI3 solar cells compared to their mixture. Using intensity modulated photovoltage/photocurrent spectroscopy, we found that the diffusion length is weakly dependent on the light intensity, while the charge collection efficiency drops with light intensity for the FAPbI3-based cells. However, for MAPbI3 and the mixture, the charge collection efficiency remains constant for a wide range of light intensities.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: Apr 22, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.