Access the full text.
Sign up today, get DeepDyve free for 14 days.
Y. Takeuchi, T. Daa, K. Kashima, S. Yokoyama, I. Nakayama, S. Noguchi (1999)
Mutations of p53 in thyroid carcinoma with an insular component.Thyroid : official journal of the American Thyroid Association, 9 4
W. Voigt, Volker Pickan, Claudio Pfeiffer, T. Mueller, Heike Simon, D. Arnold (2005)
Preclinical Evaluation of ZD1839 Alone or in Combination with Oxaliplatin in a Panel of Human Tumor Cell Lines – Implications for Clinical UseOncology Research and Treatment, 28
T. Yoshii, T. Fukumori, Y. Honjo, H. Inohara, H. Kim, A. Raz (2002)
Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest*The Journal of Biological Chemistry, 277
Peixin Dong, M. Tada, J. Hamada, A. Nakamura, T. Moriuchi, N. Sakuragi (2007)
p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cellsClinical & Experimental Metastasis, 24
Wendy Cornett, Anand Sharma, T. Day, M. Richardson, R. Hoda, J. Heerden, J. Fernandes (2007)
Anaplastic thyroid carcinoma: An overviewCurrent Oncology Reports, 9
P. Nangia-Makker, S. Nakahara, V. Hogan, A. Raz (2007)
Galectin-3 in apoptosis, a novel therapeutic targetJournal of Bioenergetics and Biomembranes, 39
J. Bush, Gang Li (2002)
Cancer chemoresistance: The relationship between p53 and multidrug transportersInternational Journal of Cancer, 98
M. Olivier, R. Eeles, M. Hollstein, Mohammed Khan, C. Harris, P. Hainaut (2002)
The IARC TP53 database: New online mutation analysis and recommendations to usersHuman Mutation, 19
N. Franken, H. Rodermond, J. Stap, J. Haveman, C. Bree (2006)
Clonogenic assay of cells in vitroNature Protocols, 1
Barbara Cecchinelli, L. Lavra, C. Rinaldo, S. Iacovelli, A. Gurtner, A. Gasbarri, Alessandra Ulivieri, F. Prete, M. Trovato, G. Piaggio, A. Bartolazzi, S. Soddu, S. Sciacchitano (2006)
Repression of the Antiapoptotic Molecule Galectin-3 by Homeodomain-Interacting Protein Kinase 2-Activated p53 Is Required for p53-Induced ApoptosisMolecular and Cellular Biology, 26
M. Nishizaki, T. Fujiwara, T. Tanida, A. Hizuta, H. Nishimori, T. Tokino, Y. Nakamura, M. Bouvet, J. Roth, N. Tanaka (1999)
Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect.Clinical cancer research : an official journal of the American Association for Cancer Research, 5 5
A. Bartolazzi, F. Orlandi, E. Saggiorato, M. Volante, F. Arecco, R. Rossetto, N. Palestini, E. Ghigo, M. Papotti, G. Bussolati, M. Martegani, F. Pantellini, A. Carpi, M. Giovagnoli, S. Monti, V. Toscano, S. Sciacchitano, G. Pennelli, C. Mian, M. Pelizzo, M. Rugge, G. Troncone, L. Palombini, G. Chiappetta, G. Botti, A. Vecchione, R. Bellocco (2008)
Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study.The Lancet. Oncology, 9 6
Mutations of p 53 in
T. Fukumori, N. Oka, Y. Takenaka, P. Nangia-Makker, Essam Elsamman, Toshinori Kasai, M. Shono, H. Kanayama, J. Ellerhorst, R. Lotan, A. Raz (2006)
Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer.Cancer research, 66 6
F. Moretti, A. Farsetti, S. Soddu, S. Misiti, M. Crescenzi, S. Filetti, M. Andreoli, A. Sacchi, A. Pontecorvi (1997)
p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cellsOncogene, 14
J. Fagin, K. Matsuo, A. Karmakar, Dan-Lin Chen, Shi Tang, H. Koeffler (1993)
High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas.The Journal of clinical investigation, 91 1
M. Volante, P. Collini, Y. Nikiforov, A. Sakamoto, K. Kakudo, R. Katoh,, R. Lloyd, V. Livolsi, M. Papotti, M. Sobrinho-Simões, G. Bussolati, J. Rosai (2007)
Poorly Differentiated Thyroid Carcinoma: The Turin Proposal for the Use of Uniform Diagnostic Criteria and an Algorithmic Diagnostic ApproachThe American Journal of Surgical Pathology, 31
D. Giuffrida, H. Gharib (2000)
Anaplastic thyroid carcinoma: current diagnosis and treatment.Annals of oncology : official journal of the European Society for Medical Oncology, 11 9
E. Komarova, L. Diatchenko, O. Rokhlin, Jason Hill, Zhaohui Wang, Vadim Krivokrysenko, E. Feinstein, A. Gudkov (1998)
Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53Oncogene, 17
Y. Dobashi, A. Sakamoto, H. Sugimura, M. Mernyei, M. Mori, T. Oyama, R. Machinami (1993)
Overexpression of p53 as a Possible Prognostic Factor in Human Thyroid CarcinomaThe American Journal of Surgical Pathology, 17
S. Strano, S. Dell’Orso, S. Agostino, G. Fontemaggi, A. Sacchi, G. Blandino (2007)
Mutant p53: an oncogenic transcription factorOncogene, 26
M. Frazier, Xiaoping He, Jinling Wang, Z. Gu, J. Cleveland, G. Zambetti (1998)
Activation of c-myc Gene Expression by Tumor-Derived p53 Mutants Requires a Discrete C-Terminal DomainMolecular and Cellular Biology, 18
A. Bartolazzi, C. D’Alessandria, M. Parisella, A. Signore, F. Prete, L. Lavra, S. Braesch-Andersen, R. Massari, C. Trotta, A. Soluri, S. Sciacchitano, F. Scopinaro (2008)
Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3PLoS ONE, 3
Kim Johnson, O. Glinskii, V. Mossine, J. Turk, T. Mawhinney, D. Anthony, C. Henry, V. Huxley, G. Glinsky, K. Pienta, A. Raz, V. Glinsky (2007)
Galectin-3 as a potential therapeutic target in tumors arising from malignant endothelia.Neoplasia, 9 8
G. Bossi, E. Lapi, S. Strano, C. Rinaldo, G. Blandino, A. Sacchi (2006)
Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expressionOncogene, 25
F. Frasca, V. Vella, A. Aloisi, A. Mandarino, E. Mazzon, R. Vigneri, P. Vigneri (2003)
p73 tumor-suppressor activity is impaired in human thyroid cancer.Cancer research, 63 18
M. Kawamura, T. Yamashita, Kaoru Segawa, Masanori Kaneuchi, M. Shindoh, Kei Fujinaga (1996)
The 273rd codon mutants of p53 show growth modulation activities not correlated with p53-specific transactivation activity.Oncogene, 12 11
F. Wyllie, M. Haughton, J. Blaydes, M. Schlumberger, D. Wynford‐Thomas (1995)
Evasion of p53-mediated growth control occurs by three alternative mechanisms in transformed thyroid epithelial cells.Oncogene, 10 1
A. Bartolazzi, A. Gasbarri, M. Papotti, G. Bussolati, T. Lucante, Ashraf Khan, H. Inohara, F. Marandino, F. Orlandi, F. Nardi, A. Vecchione, R. Tecce, O. Larsson (2001)
Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesionsThe Lancet, 357
VA Li Volsi, J Albores‐SaAvedra, SL Asa, ZW Baloch, M Sobrinho‐Simoes, B Wenig (2004)
WHO Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs
A. Sigal, V. Rotter (2000)
Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome.Cancer research, 60 24
Takashi Ito, T. Seyama, T. Mizuno, N. Tsuyama, Tomonori Hayashi, Y. Hayashi, K. Dohi, N. Nakamura, M. Akiyama (1992)
Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland.Cancer research, 52 5
G. Blandino, A. Levine, M. Oren (1999)
Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapyOncogene, 18
M. Gurnani, P. Lipari, J. Dell, B. Shi, L. Nielsen (1999)
Adenovirus-mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head and neck, ovarian, prostate, and breast cancerCancer Chemotherapy and Pharmacology, 44
C. Are, A. Shaha (2006)
Anaplastic Thyroid Carcinoma: Biology, Pathogenesis, Prognostic Factors, and Treatment ApproachesAnnals of Surgical Oncology, 13
Yingcai Wang, G. Blandino, M. Oren, D. Givol (1998)
Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugsOncogene, 17
S. Soddu, A. Sacchi (1998)
p53: prospects for cancer gene therapy.Cytokines, cellular & molecular therapy, 4 3
L. Bondeson (2004)
Tumours of the thyroid and parathyroid
T. Oishi, H. Itamochi, J. Kigawa, Y. Kanamori, M. Shimada, M. Takahashi, R. Shimogai, W. Kawaguchi, S. Sato, N. Terakawa (2007)
Galectin-3 may contribute to Cisplatin resistance in clear cell carcinoma of the ovaryInternational Journal of Gynecologic Cancer, 17
Ş. Hoşal, R. Apel, J. Freeman, Abbas Azadian, I. Rosen, V. Livolsi, S. Asa (1997)
Immunohistochemical localization of p53 in human thyroid neoplasms: Correlation with biological behaviorEndocrine Pathology, 8
Alessandra Ulivieri, L. Lavra, Roberto Dominici, L. Giacomelli, E. Brunetti, Laura Sciacca, M. Trovato, Gaetano Barresi, Theodoros Foukakis, L. Jia-Jing, Catharina Larsson, Armando Bartolazzi, Salvatore Sciacchitano (2008)
Frizzled‐1 is down‐regulated in follicular thyroid tumours and modulates growth and invasivenessThe Journal of Pathology, 215
R. Nenutil, J. Šmardová, S. Pavlova, Z. Hanzelková, P. Müller, P. Fabián, R. Hrstka, P. Janotová, M. Radina, D. Lane, P. Coates, B. Vojtesek (2005)
Discriminating functional and non‐functional p53 in human tumours by p53 and MDM2 immunohistochemistryThe Journal of Pathology, 207
Yuji Nagayama, Haruhiko Yokoi, K. Takeda, M. Hasegawa, E. Nishihara, H. Namba, S. Yamashita, Masamitsu Niwa (2000)
Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo.The Journal of clinical endocrinology and metabolism, 85 11
Galectin‐3 (Gal‐3) is an anti‐apoptotic molecule of the β‐galactoside‐binding lectin family. Gal‐3 is down‐regulated by wt‐p53 and this repression is required for p53‐induced apoptosis. Since poorly differentiated thyroid carcinomas (PDTCs) and anaplastic thyroid carcinomas (ATCs) frequently harbour p53 mutations, we asked whether Gal‐3 expression and activity could be influenced by such mutations in these tumours. We found a positive correlation between Gal‐3 expression and p53 mutation in human thyroids and in thyroid carcinoma cell lines (TCCLs) harbouring different p53 mutations. Gal‐3 was over‐expressed in most ATCs and TCCLs, especially those with the most frequently detected p53 mutation (p53R273H). Over‐expression of p53R273H in two p53‐null cells (SAOS‐2 and SW‐1736) as well as in two wt‐p53‐carrying TCCLs (TPC‐1 and K1), stimulated Gal‐3 expression, while interference with p53R273H endogenous expression in ARO cells down‐regulated Gal‐3 expression. Conversely, over‐expression of wt‐p53 in ARO cells restored the inhibitory effect on Gal‐3 expression. ARO cells are highly resistant to apoptosis and express both p53 and Gal‐3, which are increased upon cisplatin treatment. Interference with Gal‐3 expression in these cells stimulated their chemosensitivity. In conclusion, gain‐of‐function p53 mutant acquires the de novo ability to stimulate Gal‐3 expression and to increase chemoresistance in ATCs. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
The Journal of Pathology – Wiley
Published: Jan 1, 2009
Keywords: ; ; ; ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.