Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Shikata, E. Shikata, F. Hamzei, V. Glauche, R. Knab, C. Dettmers, C. Weiller, C. Büchel (2001)
Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study.Journal of neurophysiology, 85 3
A. Raymer, A. Merians, J. Adair, R. Schwartz, D. Williamson, L. Rothi, H. Poizner, K. Heilman (1999)
Crossed Apraxia: Implications for Handedness * * Portions of this paper were presented at meetings of the Society for Neuroscience, Washington, D.C., November, 1996, and the International Neuropsychological Society, Orlando, FL, February, 1997.Cortex, 35
F. Binkofski, G. Buccino, S. Posse, R. Seitz, G. Rizzolatti, H. Freund (1999)
A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐studyEuropean Journal of Neuroscience, 11
E. Renzi, P. Faglioni, P. Sorgato (1982)
Modality-specific and supramodal mechanisms of apraxia.Brain : a journal of neurology, 105 Pt 2
G. Rizzolatti, R. Camarda, L. Fogassi, M. Gentilucci, G. Luppino, M. Matelli (2004)
Functional organization of inferior area 6 in the macaque monkeyExperimental Brain Research, 71
694 Tool Use Network d Johnson-Frey et al
T. Okada, Shigeki Tanaka, T. Nakai, S. Nishizawa, T. Inui, N. Sadato, Y. Yonekura, J. Konishi (2000)
Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objectsNeuroscience Letters, 296
F. Binkofski, G. Buccino, K. Stephan, G. Rizzolatti, R. Seitz, H. Freund (1999)
A parieto-premotor network for object manipulation: evidence from neuroimagingExperimental Brain Research, 128
Scott Grafton, E. Hazeltine, R. Ivry (1998)
Abstract and Effector-Specific Representations of Motor Sequences Identified with PETThe Journal of Neuroscience, 18
G. Goldenberg, Sonja Hagmann (1998)
Tool use and mechanical problem solving in apraxiaNeuropsychologia, 36
A. Sirigu, L. Cohen, J. Duhamel, B. Pillon, B. Dubois, Y. Agid (1995)
A Selective Impairment of Hand Posture for Object Utilization in ApraxiaCortex, 31
T. Handy, Scott Grafton, Neha Shroff, S. Ketay, M. Gazzaniga (2003)
Graspable objects grab attention when the potential for action is recognizedNature Neuroscience, 6
M. Gentilucci (2003)
Object familiarity affects finger shaping during grasping of fruit stalksExperimental Brain Research, 149
K. Haaland, D. Harrington, R. Knight (1999)
Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements.Brain : a journal of neurology, 122 ( Pt 6)
Lutz Jäncke, A. Kleinschmidt, S. Mirzazade, N. Shah, Hans-Joachim Freund (2001)
The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes.Cerebral cortex, 11 2
M. Clark, A. Merians, Abhay Kothari, H. Poizner, B. Macauley, L. Rothi, K. Heilman (1994)
Spatial planning deficits in limb apraxia.Brain : a journal of neurology, 117 ( Pt 5)
F. Binkofski, C. Dohle, S. Posse, K. Stephan, H. Hefter, R. Seitz, H. Freund (1998)
Human anterior intraparietal area subserves prehensionNeurology, 50
A. Basso, C. Luzzatti, H. Spinnler (1980)
Is ideomotor apraxia the outcome of damage to well-defined regions of the left hemisphere? Neuropsychological study of CAT correlation.Journal of Neurology, Neurosurgery & Psychiatry, 43
J. Culham, S. Danckert, Joseph Souza, J. Gati, Ravi Menon, M. Goodale (2003)
Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areasExperimental Brain Research, 153
L. Buxbaum, A. Sirigu, M. Schwartz, R. Klatzky (2003)
Cognitive representations of hand posture in ideomotor apraxiaNeuropsychologia, 41
G. Goldenberg (2003)
Apraxia and Beyond: Life and Work of Hugo LiepmannCortex, 39
Scott Glover, D. Rosenbaum, J. Graham, P. Dixon (2003)
Grasping the meaning of wordsExperimental Brain Research, 154
J Neurophysiol
(1997)
Naturalistic action. In: Apraxia: the neuropsychology of action (Rothi LJG
G. Rizzolatti, L. Fogassi, V. Gallese (2002)
Motor and cognitive functions of the ventral premotor cortexCurrent Opinion in Neurobiology, 12
M. Tomasello (2000)
The Cultural Origins of Human Cognition
R. Poldrack, A. Wagner, M. Prull, J. Desmond, G. Glover, J. Gabrieli (1999)
Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal CortexNeuroImage, 10
Daniela Perani, Stefano Cappa, V. Bettinardi, S. Bressi, M. Gorno-Tempini, M. Matarrese, F. Fazio (1995)
Different neural systems for the recognition of animals and man‐made toolsNeuroReport, 6
Scott Johnson, Scott Grafton (2003)
From 'acting on' to 'acting with': the functional anatomy of object-oriented action schemata.Progress in brain research, 142
M. Beauchamp, Kathryn Lee, J. Haxby, Alex Martin (2002)
Parallel Visual Motion Processing Streams for Manipulable Objects and Human MovementsNeuron, 34
(2004)
Cortical topography of the human anterior intraparietal area
M. Rushworth, M. Rushworth, T. Paus, P. Sipila (2001)
Attention systems and the organization of the human parietal cortexNeuroImage, 13
Andrew Kertesz, José Ferro (1984)
Lesion size and location in ideomotor apraxia.Brain : a journal of neurology, 107 ( Pt 3)
J. Grèzes, J. Decety (2001)
Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta‐analysisHuman Brain Mapping, 12
M. Preul (2001)
The Human Brain: Surface, Blood Supply, and Three-Dimensional Sectional AnatomyNeurosurgery, 48
Scott Grafton, A. Fagg, R. Woods, M. Arbib (1996)
Functional anatomy of pointing and grasping in humans.Cerebral cortex, 6 2
S. Keele, R. Ivry, U. Mayr, E. Hazeltine, H. Heuer (2003)
The cognitive and neural architecture of sequence representation.Psychological review, 110 2
M. Kellenbach, M. Brett, K. Patterson (2003)
Actions Speak Louder Than Functions: The Importance of Manipulability and Action in Tool RepresentationJournal of Cognitive Neuroscience, 15
H. Imamizu, Tomoe Kuroda, S. Miyauchi, T. Yoshioka, M. Kawato (2003)
Modular organization of internal models of tools in the human cerebellumProceedings of the National Academy of Sciences of the United States of America, 100
R. Ellis, Mike Tucker (2000)
Micro-affordance: the potentiation of components of action by seen objects.British journal of psychology, 91 ( Pt 4)
V. Lawrence (2014)
Taking action.Nursing times, 76 25
Scott Johnson-Frey (2003)
What's So Special about Human Tool Use?Neuron, 39
J. Gabrieli, R. Poldrack, J. Desmond (1998)
The role of left prefrontal cortex in language and memory.Proceedings of the National Academy of Sciences of the United States of America, 95 3
K. Poeck (2004)
Ideational apraxiaJournal of Neurology, 230
Scott Johnson-Frey (2004)
The neural bases of complex tool use in humansTrends in Cognitive Sciences, 8
S. Choi, Duk Na, E. Kang, Kyung-Han Lee, Soo Lee, Dong Na (2001)
Functional magnetic resonance imaging during pantomiming tool-use gesturesExperimental Brain Research, 139
C. Ochipa, C. Ochipa, L. Rothi, L. Rothi, K. Heilman, K. Heilman (1989)
Ideational apraxia: A deficit in tool selection and useAnnals of Neurology, 25
(1962)
Human cerebral disconnection syndromes
N. Geschwind (1965)
Disconnexion syndromes in animals and man. I.Brain : a journal of neurology, 88 2
M. Beauchamp, Kathryn Lee, B. Argall, Alex Martin (2004)
Integration of Auditory and Visual Information about Objects in Superior Temporal SulcusNeuron, 41
M. Goodale, A. Milner, L. Jakobson, D. Carey (1991)
A neurological dissociation between perceiving objects and grasping themNature, 349
Alex Martin, C. Wiggs, Leslie Ungerleider, J. Haxby (1996)
Neural correlates of category-specific knowledgeNature, 379
D. Tranel, H. Damasio, A. Damasio (1997)
A neural basis for the retrieval of conceptual knowledgeNeuropsychologia, 35
T. Grabowski, H. Damasio, A. Damasio (1998)
Premotor and Prefrontal Correlates of Category-Related Lexical RetrievalNeuroImage, 7
K. Amunts, A. Schleicher, U. Bürgel, H. Mohlberg, H. Uylings, K. Zilles (1999)
Broca's region revisited: Cytoarchitecture and intersubject variabilityJournal of Comparative Neurology, 412
Eric Roy, P. Square-Storer, Sharon Hogg, Scott Adams (1991)
Analysis of task demands in apraxia.The International journal of neuroscience, 56 1-4
A. Martin, J. Haxby, F. Lalonde, C. Wiggs, Leslie Ungerleider (1995)
Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of ActionScience, 270
G. Luppino, A. Murata, Paolo Govoni, M. Matelli (1999)
Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4)Experimental Brain Research, 128
L. Chao, J. Haxby, Alex Martin (1999)
Attribute-based neural substrates in temporal cortex for perceiving and knowing about objectsNature Neuroscience, 2
D. Povinelli (2003)
Folk physics for apes : the chimpanzee's theory of how the world works
E. Renzi, F. Lucchelli (1988)
Ideational apraxia.Brain : a journal of neurology, 111 ( Pt 5)
S. Ambrose (2001)
Paleolithic Technology and Human EvolutionScience, 291
R. Leiguarda, C. Marsden (2000)
Limb apraxias: higher-order disorders of sensorimotor integration.Brain : a journal of neurology, 123 ( Pt 5)
Scott Johnson-Frey (2003)
Mirror neurons, Broca's area and language: Reflecting on the evidenceBehavioral and Brain Sciences, 26
K. Heilman, L. Rothi, E. Valenstein (1982)
Two forms of ideomotor apraxiaNeurology, 32
N. Geschwind (1965)
Disconnexion syndromes in animals and man. II.Brain : a journal of neurology, 88 3
M. Beauchamp, Kathryn Lee, J. Haxby, Alex Martin (2003)
fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable ObjectsJournal of Cognitive Neuroscience, 15
Paul Dassonville, X. Zhu, Kâmil Uǧurbil, Seong-Gi Kim, James Ashe (1997)
Functional activation in motor cortex reflects the direction and the degree of handedness.Proceedings of the National Academy of Sciences of the United States of America, 94 25
M. Godschalk, R. Lemon, H. Kuypers, H. Ronday (2004)
Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological studyExperimental Brain Research, 56
M. Torrens (1990)
Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268Clinical Radiology, 41
A. Maravita, A. Iriki (2004)
Tools for the body (schema)Trends in Cognitive Sciences, 8
R. Oldfield (1971)
The assessment and analysis of handedness: the Edinburgh inventory.Neuropsychologia, 9 1
L. Chao, Alex Martin (2000)
Representation of Manipulable Man-Made Objects in the Dorsal StreamNeuroImage, 12
R. Druga, Cortex Cerebri (1964)
The Cerebral CortexMedical Journal of Australia, 2
H. Damasio, T. Grabowski, D. Tranel, L. Ponto, R. Hichwa, A. Damasio (2001)
Neural Correlates of Naming Actions and of Naming Spatial RelationsNeuroImage, 13
H. Poizner, M. Clark, A. Merians, B. Macauley, L. Rothi, K. Heilman (1995)
Joint coordination deficits in limb apraxia.Brain : a journal of neurology, 118 ( Pt 1)
C. Grefkes, P. Weiss, K. Zilles, G. Fink (2002)
Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and MonkeysNeuron, 35
H. Ehrsson, A. Fagergren, H. Forssberg (2001)
Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study.Journal of neurophysiology, 85 6
G. Luppino, G. Rizzolatti (2000)
The Organization of the Frontal Motor Cortex.News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, 15
A. Wagner, E. Paré-Blagoev, Jill Clark, R. Poldrack (2001)
Recovering Meaning Left Prefrontal Cortex Guides Controlled Semantic RetrievalNeuron, 31
H. Ehrsson, A. Fagergren, T. Jonsson, G. Westling, Roland Johansson, H. Forssberg (2000)
Cortical activity in precision- versus power-grip tasks: an fMRI study.Journal of neurophysiology, 83 1
(2003)
Cortical mechanisms of human tool use In: Taking action: cognitive neuroscience perspectives on the problem of intentional acts
F. Tomaiuolo, J. MacDonald, Z. Caramanos, G. Posner, M. Chiavaras, Alan Evans, M. Petrides (1999)
Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysisEuropean Journal of Neuroscience, 11
Scott Grafton, L. Fadiga, M. Arbib, G. Rizzolatti (1997)
Premotor Cortex Activation during Observation and Naming of Familiar ToolsNeuroImage, 6
C. Marchetti, S. Sala (1997)
On Crossed Apraxia. Description of a Right-Handed Apraxic Patient with Right Supplementary Motor Area DamageCortex, 33
M. Rushworth, M. Krams, R. Passingham (2001)
The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human BrainJournal of Cognitive Neuroscience, 13
J. Moll, R. Oliveira-Souza, L. Passman, F. Cunha, F. Souza-Lima, P. Andreiuolo (2000)
Functional MRI correlates of real and imagined tool-use pantomimesNeurology, 54
H. Imamizu, S. Miyauchi, T. Tamada, Y. Sasaki, R. Takino, B. Pütz, T. Yoshioka, M. Kawato (2000)
Human cerebellar activity reflecting an acquired internal model of a new toolNature, 403
S. Frey, M. Funnell, V. Gerry, M. Gazzaniga (2005)
A Dissociation between the Representation of Tool-use Skills and Hand Dominance: Insights from Left- and Right-handed Callosotomy PatientsJournal of Cognitive Neuroscience, 17
Sarah Creem, D. Proffitt (2001)
Grasping objects by their handles: a necessary interaction between cognition and action.Journal of experimental psychology. Human perception and performance, 27 1
G. Goldenberg, K. Hartmann, Isa Schlott (2003)
Defective pantomime of object use in left brain damage: apraxia or asymbolia?Neuropsychologia, 41
T. Preuss, I. Stepniewska, J. Kaas (1996)
Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation studyJournal of Comparative Neurology, 371
M. Petrides, D. Pandya, D. Pandya (1984)
Projections to the frontal cortex from the posterior parietal region in the rhesus monkeyJournal of Comparative Neurology, 228
D. Tranel, D. Kemmerer, R. Adolphs, H. Damasio, A. Damasio (2003)
NEURAL CORRELATES OF CONCEPTUAL KNOWLEDGE FOR ACTIONSCognitive Neuropsychology, 20
B. Bridgeman, S. Peery, S. Anand (1997)
Interaction of cognitive and sensorimotor maps of visual spacePerception & Psychophysics, 59
K. Haaland, D. Harrington, R. Knight (2000)
Neural representations of skilled movement.Brain : a journal of neurology, 123 ( Pt 11)
Alex Martin, L. Chao (2001)
Semantic memory and the brain: structure and processesCurrent Opinion in Neurobiology, 11
H. Sakata, M. Taira, A. Murata, Seiichiro Mine (1995)
Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey.Cerebral cortex, 5 5
L. Buxbaum (2001)
Ideomotor Apraxia: a Call to ActionNeurocase, 7
H. Liepmann
Die linke Hemisphäre und das Handeln.1)
B. Bridgeman, S. Lewis, G. Heit, M. Nagle (1979)
Relation between cognitive and motor-oriented systems of visual position perception.Journal of experimental psychology. Human perception and performance, 5 4
Determining the relationship between mechanisms involved in action planning and/or execution is critical to understanding the neural bases of skilled behaviors, including tool use. Here we report findings from two fMRI studies of healthy, right-handed adults in which an event-related design was used to distinguish regions involved in planning (i.e. identifying, retrieving and preparing actions associated with a familiar tools' uses) versus executing tool use gestures with the dominant right (experiment 1) and non-dominant left (experiment 2) hands. For either limb, planning tool use actions activates a distributed network in the left cerebral hemisphere consisting of: (i) posterior superior temporal sulcus, along with proximal regions of the middle and superior temporal gyri; (ii) inferior frontal and ventral premotor cortices; (iii) two distinct parietal areas, one located in the anterior supramarginal gyrus (SMG) and another in posterior SMG and angular gyrus; and (iv) dorsolateral prefrontal cortex (DLFPC). With the exception of left DLFPC, adjacent and partially overlapping sub-regions of left parietal, frontal and temporal cortex are also engaged during action execution. We suggest that this left lateralized network constitutes a neural substrate for the interaction of semantic and motoric representations upon which meaningful skills depend.
Cerebral Cortex – Oxford University Press
Published: Jun 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.