Access the full text.
Sign up today, get DeepDyve free for 14 days.
Rui Zhu, Changyun Jiang, B. Liu, S. Ramakrishna (2009)
Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic DyeAdvanced Materials, 21
J. Ball, Michael Lee, Andrew Hey, H. Snaith (2013)
Low-temperature processed meso-superstructured to thin-film perovskite solar cellsEnergy and Environmental Science, 6
Songyuan Dai, Kongjia Wang, Jian Weng, Yifeng Sui, Yang Huang, Shangfeng Xiao, Shuanghong Chen, Linhua Hu, F. Kong, Xu Pan, Chengwu Shi, Li Guo (2005)
Design of DSC panel with efficiency more than 6Solar Energy Materials and Solar Cells, 85
N. Park (2013)
Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar CellJournal of Physical Chemistry Letters, 4
S. Mastroianni, A. Lanuti, S. Penna, A. Reale, T. Brown, A. Carlo, F. Decker (2012)
Physical and electrochemical analysis of an indoor-outdoor ageing test of large-area dye solar cell devices.Chemphyschem : a European journal of chemical physics and physical chemistry, 13 12
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
P. Docampo, Andrew Hey, S. Guldin, R. Gunning, U. Steiner, H. Snaith (2012)
Pore Filling of Spiro‐OMeTAD in Solid‐State Dye‐Sensitized Solar Cells Determined Via Optical ReflectometryAdvanced Functional Materials, 22
U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel (1998)
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficienciesNature, 395
Hui‐Seon Kim, Jin‐Wook Lee, Natalia Yantara, P. Boix, S. Kulkarni, S. Mhaisalkar, M. Grätzel, N. Park (2013)
High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano letters, 13 6
Hui‐Seon Kim, I. Mora‐Seró, Victoria González‐Pedro, F. Fabregat‐Santiago, E. Juárez-Pérez, N. Park, J. Bisquert (2013)
Mechanism of carrier accumulation in perovskite thin-absorber solar cellsNature Communications, 4
T. Leijtens, G. Eperon, Sandeep Pathak, A. Abate, Michael Lee, H. Snaith (2013)
Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cellsNature Communications, 4
J. Heo, S. Im, J. Noh, T. Mandal, Choong‐Sun Lim, J. Chang, Yong Lee, Hi-jung Kim, A. Sarkar, Md. Nazeeruddin, M. Grätzel, S. Seok (2013)
Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductorsNature Photonics, 7
Craig Peters, I. Sachs‐Quintana, William Mateker, Thomas Heumueller, J. Rivnay, Rodigo Noriega, Z. Beiley, E. Hoke, A. Salleo, M. McGehee (2012)
The Mechanism of Burn‐in Loss in a High Efficiency Polymer Solar CellAdvanced Materials, 24
P. Kumar (2021)
Oil spill clean-upModern Treatment Strategies for Marine Pollution
J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach (2001)
High efficiency solid-state photovoltaic device due to inhibition of interface charge recombinationApplied Physics Letters, 79
F. Matteocci, G. Mincuzzi, F. Giordano, A. Capasso, Emma Artuso, C. Barolo, G. Viscardi, T. Brown, A. Reale, A. Carlo (2013)
Blocking layer optimisation of poly(3-hexylthiopene)based solid state dye sensitized solar cellsScience & Engineering Faculty
H. Snaith, A. Petrozza, S. Ito, H. Miura, M. Grätzel (2009)
Charge Generation and Photovoltaic Operation of Solid‐State Dye‐Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene‐Based SensitizerAdvanced Functional Materials, 19
Dongqin Bi, Lei Yang, G. Boschloo, A. Hagfeldt, E. Johansson (2013)
Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells.The journal of physical chemistry letters, 4 9
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
U. Cappel, T. Daeneke, U. Bach (2012)
Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance.Nano letters, 12 9
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
F. Matteocci, S. Casaluci, S. Razza, A. Guidobaldi, T. Brown, A. Reale, A. Carlo (2014)
Solid state dye solar cell modulesJournal of Power Sources, 246
V. Zardetto, T. Brown, A. Reale, A. Carlo (2011)
Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance propertiesJournal of Polymer Science Part B, 49
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
F. Giacomo, S. Razza, F. Matteocci, A. D’Epifanio, S. Licoccia, T. Brown, A. Carlo (2014)
High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layerJournal of Power Sources, 251
M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, N. Lemaître (2009)
The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsideredPolymer Degradation and Stability, 94
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
Bing Cai, Y. Xing, Zhou Yang, Wen-Hau Zhang, J. Qiu (2013)
High performance hybrid solar cells sensitized by organolead halide perovskitesEnergy and Environmental Science, 6
M. Madsen, T. Tromholt, K. Norrman, F. Krebs (2013)
Concentrated Light for Accelerated Photo Degradation of Polymer MaterialsAdvanced Energy Materials, 3
H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, Daisuke Matsumoto, T. Nagai (2010)
Efficient dye-sensitized solar cell sub-modulesCurrent Applied Physics, 10
F. Giordano, A. Guidobaldi, E. Petrolati, L. Vesce, R. Riccitelli, A. Reale, T. Brown, A. Carlo (2013)
Realization of high performance large area Z‐series‐interconnected opaque dye solar cell modulesProgress in Photovoltaics: Research and Applications, 21
We fabricated the first solid state modules based on organometal halide perovskite CH3NH3PbI3−xClx using Spiro-OMeTAD and poly(3-hexylthiophene) as hole transport materials. Device up-scaling was performed using innovative procedures to realize large-area cells and the integrated series-interconnections. The perovskite-based modules show a maximum conversion efficiency of 5.1% using both poly(3-hexylthiophene) and Spiro-OMeTAD. A long-term stability test was performed (in air, under AM1.5G, 1 Sun illumination conditions) using both materials showing different behaviour under continuous light stress. Whilst the poly(3-hexylthiophene)-based module efficiency drops by about 80% with respect to the initial value after 170 hours, the Spiro-based module shows a promising long-term stability maintaining more than 60% of its initial efficiency after 335 hours.
Physical Chemistry Chemical Physics – Royal Society of Chemistry
Published: Feb 5, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.