Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The functional organization of posterior parietal association cortex

The functional organization of posterior parietal association cortex <jats:title>Abstract</jats:title><jats:p>Posterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.</jats:p><jats:p>The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are located<jats:italic>in part</jats:italic>in parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Behavioral and Brain Sciences CrossRef

The functional organization of posterior parietal association cortex

Behavioral and Brain Sciences , Volume 3 (4): 485-499 – Dec 1, 1980

The functional organization of posterior parietal association cortex


Abstract

<jats:title>Abstract</jats:title><jats:p>Posterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.</jats:p><jats:p>The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are located<jats:italic>in part</jats:italic>in parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.</jats:p>

Loading next page...
 
/lp/crossref/the-functional-organization-of-posterior-parietal-association-cortex-TK4EfcOixi

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0140-525X
DOI
10.1017/s0140525x00006324
Publisher site
See Article on Publisher Site

Abstract

<jats:title>Abstract</jats:title><jats:p>Posterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.</jats:p><jats:p>The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are located<jats:italic>in part</jats:italic>in parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.</jats:p>

Journal

Behavioral and Brain SciencesCrossRef

Published: Dec 1, 1980

References