Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Ahmad-Nejad, H. Häcker, Mark Rutz, S. Bauer, R. Vabulas, H. Wagner (2002)
Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartmentsEuropean Journal of Immunology, 32
J. Blander, R. Medzhitov (2006)
Toll-dependent selection of microbial antigens for presentation by dendritic cellsNature, 440
K. Haglund, S. Sigismund, Simona Polo, I. Szymkiewicz, P. Fiore, I. Dikič (2003)
Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradationNature Cell Biology, 5
F. Liew, Damo Xu, E. Brint, L. O’Neill (2005)
Negative regulation of Toll-like receptor-mediated immune responsesNature Reviews Immunology, 5
Saumendra Sarkar, K. Peters, C. Elco, S. Sakamoto, Srabani Pal, G. Sen (2004)
Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signalingNature Structural &Molecular Biology, 11
I. Johnsen, Thuy Nguyen, Monika Ringdal, Anne Tryggestad, O. Bakke, E. Lien, T. Espevik, M. Anthonsen (2006)
Toll‐like receptor 3 associates with c‐Src tyrosine kinase on endosomes to initiate antiviral signalingThe EMBO Journal, 25
C. Leifer, James Brooks, K. Hoelzer, Jody Lopez, M. Kennedy, A. Mazzoni, D. Segal (2006)
Cytoplasmic Targeting Motifs Control Localization of Toll-like Receptor 9*Journal of Biological Chemistry, 281
Fangtian Huang, D. Kirkpatrick, Xuejun Jiang, S. Gygi, A. Sorkin (2006)
Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain.Molecular cell, 21 6
S. Saitoh, S. Akashi, T. Yamada, N. Tanimura, Fumi Matsumoto, K. Fukase, S. Kusumoto, A. Kosugi, K. Miyake (2004)
Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked with TLR4-signalingJournal of Endotoxin Research, 10
D. Conrad (2005)
Faculty Opinions recommendation of Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease.
T. Chuang, R. Ulevitch (2004)
Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptorsNature Immunology, 5
B. Edelson, E. Unanue (2002)
MyD88-Dependent but Toll-Like Receptor 2-Independent Innate Immunity to Listeria: No Role for Either in Macrophage Listericidal Activity1The Journal of Immunology, 169
Ling-Yu Chen, B. Zuraw, Ming Zhao, Fu-Tong Liu, Shuang Huang, Z. Pan (2003)
Involvement of protein tyrosine kinase in Toll-like receptor 4-mediated NF-kappa B activation in human peripheral blood monocytes.American journal of physiology. Lung cellular and molecular physiology, 284 4
C. Pasare, R. Medzhitov (2004)
Toll-dependent control mechanisms of CD4 T cell activation.Immunity, 21 5
L. Guillot, Samir Medjane, K. Le-Barillec, V. Balloy, C. Danel, M. Chignard, M. Si-Tahar (2004)
Response of Human Pulmonary Epithelial Cells to Lipopolysaccharide Involves Toll-like Receptor 4 (TLR4)-dependent Signaling PathwaysJournal of Biological Chemistry, 279
S. Uematsu, S. Akira (2006)
Toll-like receptors and innate immunityJournal of Molecular Medicine, 84
M. Guha, N. Mackman (2002)
The Phosphatidylinositol 3-Kinase-Akt Pathway Limits Lipopolysaccharide Activation of Signaling Pathways and Expression of Inflammatory Mediators in Human Monocytic Cells*The Journal of Biological Chemistry, 277
G. Paolo, P. Camilli (2006)
Phosphoinositides in cell regulation and membrane dynamicsNature, 443
D. Gillooly, Isabel Morrow, M. Lindsay, R. Gould, Nia Bryant, J. Gaullier, R. Parton, H. Stenmark (2000)
Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cellsThe EMBO Journal, 19
N. Thieblemont, S. Wright (1999)
Transport of Bacterial Lipopolysaccharide to the Golgi ApparatusThe Journal of Experimental Medicine, 190
K. Venkateswarlu, P. Oatey, J. Tavaré, P. Cullen (1998)
Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinaseCurrent Biology, 8
Kenji Funami, M. Matsumoto, H. Oshiumi, T. Akazawa, A. Yamamoto, T. Seya (2004)
The cytoplasmic 'linker region' in Toll-like receptor 3 controls receptor localization and signaling.International immunology, 16 8
T. Nishiya, E. Kajita, S. Miwa, A. DeFranco (2005)
TLR3 and TLR7 Are Targeted to the Same Intracellular Compartments by Distinct Regulatory Elements*♦Journal of Biological Chemistry, 280
T. Means, E. Latz, F. Hayashi, M. Murali, D. Golenbock, A. Luster (2005)
Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9.The Journal of clinical investigation, 115 2
N. Bright, M. Gratian, J. Luzio (2005)
Endocytic Delivery to Lysosomes Mediated by Concurrent Fusion and Kissing Events in Living CellsCurrent Biology, 15
D. Rowe, A. McGettrick, E. Latz, B. Monks, N. Gay, Masahiro Yamamoto, S. Akira, L. O’Neill, K. Fitzgerald, D. Golenbock (2006)
The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction.Proceedings of the National Academy of Sciences of the United States of America, 103 16
E. Latz, A. Visintin, E. Lien, Kate Fitzgerald, B. Monks, E. Kurt-Jones, D. Golenbock, T. Espevik (2002)
Lipopolysaccharide Rapidly Traffics to and from the Golgi Apparatus with the Toll-like Receptor 4-MD-2-CD14 Complex in a Process That Is Distinct from the Initiation of Signal Transduction* 210The Journal of Biological Chemistry, 277
E. Latz, A. Schoenemeyer, A. Visintin, K. Fitzgerald, B. Monks, C. Knetter, E. Lien, N. Nilsen, T. Espevik, D. Golenbock (2004)
TLR9 signals after translocating from the ER to CpG DNA in the lysosomeNature Immunology, 5
M. Hornef, B. Normark, A. Vandewalle, S. Normark (2003)
Intracellular Recognition of Lipopolysaccharide by Toll-like Receptor 4 in Intestinal Epithelial CellsThe Journal of Experimental Medicine, 198
H. Husebye, Ø. Halaas, H. Stenmark, G. Tunheim, Ø. Sandanger, B. Bogen, A. Brech, E. Latz, T. Espevik (2006)
Endocytic pathways regulate Toll‐like receptor 4 signaling and link innate and adaptive immunityThe EMBO Journal, 25
U. Schaible, S. Kaufmann (2004)
Iron and microbial infectionNature Reviews Microbiology, 2
H. Stenmark, R. Aasland, P. Driscoll (2002)
The phosphatidylinositol 3‐phosphate‐binding FYVE fingerFEBS Letters, 513
Jonathan Kagan, R. Medzhitov (2006)
Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor SignalingCell, 125
F. Yarovinsky, Dekai Zhang, J. Andersen, G. Bannenberg, C. Serhan, M. Hayden, S. Hieny, F. Sutterwala, R. Flavell, S. Ghosh, A. Sher (2005)
TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like ProteinScience, 308
N. Nilsen, U. Nonstad, N. Khan, C. Knetter, S. Akira, A. Sundan, T. Espevik, E. Lien (2004)
Lipopolysaccharide and Double-stranded RNA Up-regulate Toll-like Receptor 2 Independently of Myeloid Differentiation Factor 88*Journal of Biological Chemistry, 279
Birgit Meusser, C. Hirsch, E. Jarosch, T. Sommer (2005)
ERAD: the long road to destructionNature Cell Biology, 7
J. Gruenberg, F. Goot (2006)
Mechanisms of pathogen entry through the endosomal compartmentsNature Reviews Molecular Cell Biology, 7
A. Marshak‐Rothstein (2006)
Toll-like receptors in systemic autoimmune diseaseNature Reviews. Immunology, 6
J. Bohnhorst, T. Rasmussen, S. Moen, M. Fløttum, L. Knudsen, M. Børset, T. Espevik, A. Sundan (2006)
Toll-like receptors mediate proliferation and survival of multiple myeloma cellsLeukemia, 20
C. Feng, C. Scanga, Carmen Collazo-Custodio, A. Cheever, S. Hieny, P. Caspar, A. Sher (2003)
Mice Lacking Myeloid Differentiation Factor 88 Display Profound Defects in Host Resistance and Immune Responses to Mycobacterium avium Infection Not Exhibited by Toll-Like Receptor 2 (TLR2)- and TLR4-Deficient AnimalsThe Journal of Immunology, 171
J. Gruenberg, H. Stenmark (2004)
The biogenesis of multivesicular endosomesNature Reviews Molecular Cell Biology, 5
J. Bonifacino, L. Traub (2003)
Signals for sorting of transmembrane proteins to endosomes and lysosomes.Annual review of biochemistry, 72
K. Tabeta, K. Hoebe, E. Janssen, Xin Du, P. Georgel, K. Crozat, S. Mudd, N. Mann, S. Sovath, Jason Goode, L. Shamel, A. Herskovits, D. Portnoy, M. Cooke, L. Tarantino, T. Wiltshire, B. Steinberg, S. Grinstein, B. Beutler (2006)
The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9Nature Immunology, 7
J. Choe, M. Kelker, I. Wilson (2005)
Crystal Structure of Human Toll-Like Receptor 3 (TLR3) EctodomainScience, 309
1,2 1 1 Øyvind Halaas , Harald Husebye and Terje Espevik Institute of Cancer Research and Molecular Medicine, NTNU, N-7489 Trondheim, Norway. [email protected] St. Olavs Hospital, N-7006 Trondheim, Norway 1 Introduction Multicellular organisms are constantly challenged by microbes that are threatening to invade the host and causing genome or tissue destruction and pathology. In order to fight back attacks it is essential for the host to detect pathogens early before any tissue damage has occurred. For this purpose the Toll-like receptors (TLR) emerged as conserved microbial recognition proteins in species as different as worms (Caenorhabditis elegans) and humans. To date, 12 different TLRs have been found in mammals. TLR1, 2, 4, and 6 are found on the plasma membrane of immune cells and recognize lipoproteins and lipoglycans found on the surface of microbes. TLR5 is also on the plasma membrane and recognizes the motility apparatus protein flagellin. TLR3, 7, 8 and 9 are found intracellularly in immune cells and recognize a variety of nucleotides and nucleoside analogues found more frequently in microbes than in vertebrates. Lack of TLR signaling may results in severe loss of anti-microbial defense, and erroneous TLR signaling may result in allergies, auto-immunity or cancer (Bohnhorst,
Published: Jan 1, 2007
Keywords: Endoplasmic Reticulum; Early Endosome; Late Endosome; Clathrin Heavy Chain; FYVE Domain
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.