Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2

Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1... Galectins are emerging as a new class of bioactive molecules with specific immunomodulatory properties. Galectin-1 (Gal-1), a member of this family, has been shown to induce apoptosis of mature T cells and immature thymocytes. To gain insight into the intracellular signals transduced by Gal-1 upon binding to mature T cells, we investigated whether this protein triggered activation of the dimeric AP-1 transcription factor. A marked increase in the binding of nuclear extracts to synthetic oligonucleotides containing the AP-1 consensus sequence, could be detected by an electrophoretic mobility shift assay, when T cells were cultured for 30 min in the presence of Gal-1. This DNA-binding activity was preceded by a rapid increase in the levels of c-Jun mRNA, as determined by Northern blot analysis. Requirement of AP-1 for Gal-1-induced apoptosis was confirmed by the dose-dependent reduction on the level of DNA fragmentation observed when cells were pre-treated with curcumin (an inhibitor of AP-1 activation) before exposure to Gal-1. Finally, evidence is also provided by Western blot analysis, showing that Gal-1 inhibits Concanavalin A (Con A) induction of Bcl-2 protein. Results presented in this study provide the first experimental evidence regarding AP-1 and Bcl-2 as targets of the signal transduction pathway triggered by Gal-1 and set the basis for a more in depth understanding of the molecular mechanisms of T-cell death regulation. Cell Death and Differentiation (2000) 7, 747–753 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell Death & Differentiation Springer Journals

Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2

Loading next page...
 
/lp/springer-journals/molecular-mechanisms-implicated-in-galectin-1-induced-apoptosis-TD5Tyv4RTh

References (55)

Publisher
Springer Journals
Copyright
Copyright © 2000 by Macmillan Publishers Limited
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Cell Biology; Stem Cells; Apoptosis; Cell Cycle Analysis
ISSN
1350-9047
eISSN
1476-5403
DOI
10.1038/sj.cdd.4400708
Publisher site
See Article on Publisher Site

Abstract

Galectins are emerging as a new class of bioactive molecules with specific immunomodulatory properties. Galectin-1 (Gal-1), a member of this family, has been shown to induce apoptosis of mature T cells and immature thymocytes. To gain insight into the intracellular signals transduced by Gal-1 upon binding to mature T cells, we investigated whether this protein triggered activation of the dimeric AP-1 transcription factor. A marked increase in the binding of nuclear extracts to synthetic oligonucleotides containing the AP-1 consensus sequence, could be detected by an electrophoretic mobility shift assay, when T cells were cultured for 30 min in the presence of Gal-1. This DNA-binding activity was preceded by a rapid increase in the levels of c-Jun mRNA, as determined by Northern blot analysis. Requirement of AP-1 for Gal-1-induced apoptosis was confirmed by the dose-dependent reduction on the level of DNA fragmentation observed when cells were pre-treated with curcumin (an inhibitor of AP-1 activation) before exposure to Gal-1. Finally, evidence is also provided by Western blot analysis, showing that Gal-1 inhibits Concanavalin A (Con A) induction of Bcl-2 protein. Results presented in this study provide the first experimental evidence regarding AP-1 and Bcl-2 as targets of the signal transduction pathway triggered by Gal-1 and set the basis for a more in depth understanding of the molecular mechanisms of T-cell death regulation. Cell Death and Differentiation (2000) 7, 747–753

Journal

Cell Death & DifferentiationSpringer Journals

Published: Jul 27, 2000

There are no references for this article.