Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Effects of the Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by Female Aedes aegypti (Diptera: Culicidae): Topical Application and Ingestion

Effects of the Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by... Botanical insecticides offer novel chemistries and actions that may provide effective mosquito control. Toosendanin (TSN, 95% purity) is one such insecticide used to control crop pests in China, and in this study, it was evaluated for lethal and sublethal effects on larvae and females of the yellowfever mosquito, Aedes aegypti (L.). TSN was very toxic to first instar larvae after a 24 h exposure (LC50 = 60.8 μg/ml) and to adult females up to 96 h after topical treatment (LD50 = 4.3 μg/female) or ingestion in a sugar bait (LC50 = 1.02 μg/μl). Treatment of first instars for 24 h with a range of sublethal doses (6.3–25 μg/ml) delayed development to pupae by 1 to 2 d. Egg production and larval hatching from eggs were dose dependently reduced (>45%) by TSN doses (1.25–10.0 μg) topically applied to females 24 h before or 1 h after a bloodmeal. Ingestion of TSN (0.031–0.25 μg/μl of sugar bait) by females 24 h before a bloodmeal also greatly reduced egg production and larval hatch; no eggs were oviposited by females ingesting the highest dose. Further studies revealed that topical or ingested TSN dose-dependently disrupted yolk deposition in oocytes, blood ingestion and digestion, and ovary ecdysteroid production in blood-fed females. Overall, our results indicate that TSN is an effective insecticide for Ae. aegypti larvae and adults, because of its overt toxicity at high doses and disruption of development and reproduction at sublethal doses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Entomology Oxford University Press

Effects of the Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by Female Aedes aegypti (Diptera: Culicidae): Topical Application and Ingestion

Journal of Medical Entomology , Volume 50 (1) – Jan 1, 2013

Loading next page...
 
/lp/oxford-university-press/effects-of-the-botanical-insecticide-toosendanin-on-blood-digestion-Sy2ytdyzX0

References (37)

Publisher
Oxford University Press
Copyright
© 2013 Entomological Society of America
ISSN
0022-2585
eISSN
1938-2928
DOI
10.1603/ME12119
Publisher site
See Article on Publisher Site

Abstract

Botanical insecticides offer novel chemistries and actions that may provide effective mosquito control. Toosendanin (TSN, 95% purity) is one such insecticide used to control crop pests in China, and in this study, it was evaluated for lethal and sublethal effects on larvae and females of the yellowfever mosquito, Aedes aegypti (L.). TSN was very toxic to first instar larvae after a 24 h exposure (LC50 = 60.8 μg/ml) and to adult females up to 96 h after topical treatment (LD50 = 4.3 μg/female) or ingestion in a sugar bait (LC50 = 1.02 μg/μl). Treatment of first instars for 24 h with a range of sublethal doses (6.3–25 μg/ml) delayed development to pupae by 1 to 2 d. Egg production and larval hatching from eggs were dose dependently reduced (>45%) by TSN doses (1.25–10.0 μg) topically applied to females 24 h before or 1 h after a bloodmeal. Ingestion of TSN (0.031–0.25 μg/μl of sugar bait) by females 24 h before a bloodmeal also greatly reduced egg production and larval hatch; no eggs were oviposited by females ingesting the highest dose. Further studies revealed that topical or ingested TSN dose-dependently disrupted yolk deposition in oocytes, blood ingestion and digestion, and ovary ecdysteroid production in blood-fed females. Overall, our results indicate that TSN is an effective insecticide for Ae. aegypti larvae and adults, because of its overt toxicity at high doses and disruption of development and reproduction at sublethal doses.

Journal

Journal of Medical EntomologyOxford University Press

Published: Jan 1, 2013

There are no references for this article.