Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Minimal representation-infinite artin algebras

Minimal representation-infinite artin algebras <jats:p>Let <jats:italic>A</jats:italic> be an artin algebra over a commutative artin ring <jats:italic>R</jats:italic>, mod <jats:italic>A</jats:italic> be the category of finitely generated right <jats:italic>A</jats:italic>-modules, and rad<jats:sup>∞</jats:sup> (mod<jats:italic>A</jats:italic>) be the infinite power of the Jacobson radical rad(mod<jats:italic>A</jats:italic>) of mod<jats:italic>A</jats:italic>. Recall that <jats:italic>A</jats:italic> is said to be representation-finite if mod <jats:italic>A</jats:italic> admits only finitely many non-isomorphic indecomposable modules. It is known that <jats:italic>A</jats:italic> is representation-finite if and only if rad<jats:sup>∞</jats:sup> (mod <jats:italic>A</jats:italic>) = 0. Moreover, from the validity of the First Brauer–Thrall Conjecture [<jats:bold>26</jats:bold>, <jats:bold>2</jats:bold>] we know that <jats:italic>A</jats:italic> is representation-finite if and only if there is a common bound on the length of indecomposable modules in mod <jats:italic>A</jats:italic>.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Proceedings of the Cambridge Philosophical Society CrossRef

Minimal representation-infinite artin algebras

Mathematical Proceedings of the Cambridge Philosophical Society , Volume 116 (2): 229-243 – Sep 1, 1994

Minimal representation-infinite artin algebras


Abstract

<jats:p>Let <jats:italic>A</jats:italic> be an artin algebra over a commutative artin ring <jats:italic>R</jats:italic>, mod <jats:italic>A</jats:italic> be the category of finitely generated right <jats:italic>A</jats:italic>-modules, and rad<jats:sup>∞</jats:sup> (mod<jats:italic>A</jats:italic>) be the infinite power of the Jacobson radical rad(mod<jats:italic>A</jats:italic>) of mod<jats:italic>A</jats:italic>. Recall that <jats:italic>A</jats:italic> is said to be representation-finite if mod <jats:italic>A</jats:italic> admits only finitely many non-isomorphic indecomposable modules. It is known that <jats:italic>A</jats:italic> is representation-finite if and only if rad<jats:sup>∞</jats:sup> (mod <jats:italic>A</jats:italic>) = 0. Moreover, from the validity of the First Brauer–Thrall Conjecture [<jats:bold>26</jats:bold>, <jats:bold>2</jats:bold>] we know that <jats:italic>A</jats:italic> is representation-finite if and only if there is a common bound on the length of indecomposable modules in mod <jats:italic>A</jats:italic>.</jats:p>

Loading next page...
 
/lp/crossref/minimal-representation-infinite-artin-algebras-SwErWB33jL

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0305-0041
DOI
10.1017/s0305004100072546
Publisher site
See Article on Publisher Site

Abstract

<jats:p>Let <jats:italic>A</jats:italic> be an artin algebra over a commutative artin ring <jats:italic>R</jats:italic>, mod <jats:italic>A</jats:italic> be the category of finitely generated right <jats:italic>A</jats:italic>-modules, and rad<jats:sup>∞</jats:sup> (mod<jats:italic>A</jats:italic>) be the infinite power of the Jacobson radical rad(mod<jats:italic>A</jats:italic>) of mod<jats:italic>A</jats:italic>. Recall that <jats:italic>A</jats:italic> is said to be representation-finite if mod <jats:italic>A</jats:italic> admits only finitely many non-isomorphic indecomposable modules. It is known that <jats:italic>A</jats:italic> is representation-finite if and only if rad<jats:sup>∞</jats:sup> (mod <jats:italic>A</jats:italic>) = 0. Moreover, from the validity of the First Brauer–Thrall Conjecture [<jats:bold>26</jats:bold>, <jats:bold>2</jats:bold>] we know that <jats:italic>A</jats:italic> is representation-finite if and only if there is a common bound on the length of indecomposable modules in mod <jats:italic>A</jats:italic>.</jats:p>

Journal

Mathematical Proceedings of the Cambridge Philosophical SocietyCrossRef

Published: Sep 1, 1994

References