Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Dennler, A. Mozer, G. Juska, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N. Sariciftci (2006)
Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cellsOrganic Electronics, 7
J. Yun, A. Ho-baillie, Shujuan Huang, S. Woo, Y. Heo, J. Seidel, Fuzhi Huang, Yi-bing Cheng, M. Green (2015)
Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells.The journal of physical chemistry letters, 6 5
R. Long, Jin Liu, O. Prezhdo (2016)
Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation.Journal of the American Chemical Society, 138 11
Ye Yang, D. Ostrowski, R. France, K. Zhu, J. Lagemaat, J. Luther, M. Beard (2015)
Observation of a hot-phonon bottleneck in lead-iodide perovskitesNature Photonics, 10
Hui‐Seon Kim, I. Mora‐Seró, Victoria González‐Pedro, F. Fabregat‐Santiago, E. Juárez-Pérez, N. Park, J. Bisquert (2013)
Mechanism of carrier accumulation in perovskite thin-absorber solar cellsNature Communications, 4
Ye Yang, Yong Yan, Mengjin Yang, Sukgeun Choi, K. Zhu, J. Luther, M. Beard (2015)
Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystalNature Communications, 6
A. Sadhanala, F. Deschler, Tudor Thomas, S. Dutton, Karl Goedel, Fabian Hanusch, M. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, R. Friend (2014)
Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.The journal of physical chemistry letters, 5 15
Jixian Xu, A. Buin, Alexander Ip, Wei Li, O. Voznyy, R. Comin, M. Yuan, Seokmin Jeon, Zhijun Ning, Jeffrey McDowell, P. Kanjanaboos, Jon-Paul Sun, Xinzheng Lan, L. Quan, Dong Kim, I. Hill, P. Maksymovych, E. Sargent (2015)
Perovskite–fullerene hybrid materials suppress hysteresis in planar diodesNature Communications, 6
A Sadhanala (2014)
Preparation of single-phase films of CH3NH3Pb(I1−x Br x )3 with sharp optical band edgesJ. Phys. Chem. Lett., 5
Namyoung Ahn, Dae-Yong Son, I. Jang, S. Kang, Mansoo Choi, N. Park (2015)
Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide.Journal of the American Chemical Society, 137 27
Yangyang Dang, Yang Liu, Youxuan Sun, Dongsheng Yuan, Xiaolong Liu, Weiqun Lu, Guangfeng Liu, Haibing Xia, X. Tao (2015)
Bulk crystal growth of hybrid perovskite material CH3NH3PbI3CrystEngComm, 17
A. Zande, Pinshane Huang, Daniel Chenet, Timothy Berkelbach, Y. You, Gwan‐Hyoung Lee, T. Heinz, D. Reichman, D. Muller, J. Hone (2013)
Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide.Nature materials, 12 6
Huijie Yu, Haipeng Lu, Fangyan Xie, Shuang Zhou, N. Zhao (2016)
Native Defect‐Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar CellsAdvanced Functional Materials, 26
Woo-Seok Jeong, Jin‐Wook Lee, S. Jung, J. Yun, N. Park (2011)
Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cellsSolar Energy Materials and Solar Cells, 95
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
J. Im, I. Jang, N. Pellet, M. Grätzel, N. Park (2014)
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nature nanotechnology, 9 11
Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Yong-bo Yuan, Jinsong Huang (2014)
Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cellsNature Communications, 5
X. Wen, R. Sheng, A. Ho-baillie, A. Benda, S. Woo, Qing-shan Ma, Shujuan Huang, M. Green (2014)
Morphology and Carrier Extraction Study of Organic-Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy.The journal of physical chemistry letters, 5 21
Woon Yang, J. Noh, N. Jeon, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
High-performance photovoltaic perovskite layers fabricated through intramolecular exchangeScience, 348
W. Yin, Hangyan Chen, T. Shi, S. Wei, Yanfa Yan (2015)
Origin of High Electronic Quality in Structurally Disordered CH3NH3PbI3 and the Passivation Effect of Cl and O at Grain BoundariesAdvanced Electronic Materials, 1
Qi Chen, Huanping Zhou, Tze‐Bin Song, Song Luo, Z. Hong, Hsin‐Sheng Duan, L. Dou, Yongsheng Liu, Yang Yang (2014)
Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.Nano letters, 14 7
Yani Chen, Jiajun Peng, Diqing Su, Xiaoqing Chen, Ziqi Liang (2015)
Efficient and balanced charge transport revealed in planar perovskite solar cells.ACS applied materials & interfaces, 7 8
Julia Schafferhans, A. Baumann, C. Deibel, VI VladimirDyakonovExperimentalPhysics, F. Physics, Astronomy, Julius-Maximilians-Universitat Wurzburg, Wurzburg, H Germany, Zae Bayern, Bavarian Research (2008)
Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene)Applied Physics Letters, 93
M. Agiorgousis, Yi-Yang Sun, H. Zeng, Shengbai Zhang (2014)
Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3.Journal of the American Chemical Society, 136 41
Jiangjun Li, Jingyuan Ma, Qianqing Ge, Jinsong Hu, Dong Wang, L. Wan (2015)
Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells.ACS applied materials & interfaces, 7 51
G. Xing, N. Mathews, Shuangyong Sun, Swee Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, T. Sum (2013)
Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3Science, 342
Wenzhe Li, Jiandong Fan, Jiangwei Li, Y. Mai, Liduo Wang (2015)
Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%.Journal of the American Chemical Society, 137 32
W. Yin, T. Shi, Yanfa Yan (2014)
Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorberApplied Physics Letters, 104
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
Qingfeng Dong, Yanjun Fang, Yuchuan Shao, P. Mulligan, J. Qiu, L. Cao, Jinsong Huang (2015)
Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystalsScience, 347
G. Juska, N. Nekrašas, K. Genevičius, J. Stuchlík, J. Kǒcka (2004)
Relaxation of photoexited charge carrier concentration and mobility in μc-Si:HThin Solid Films, 451
Weibo Yan, Yunlong Li, Yu Li, Senyun Ye, Zhiwei Liu, Shufeng Wang, Z. Bian, Chunhui Huang (2015)
Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layerNano Research, 8
Dane Quilettes, S. Vorpahl, S. Stranks, H. Nagaoka, G. Eperon, Mark Ziffer, H. Snaith, D. Ginger (2015)
Impact of microstructure on local carrier lifetime in perovskite solar cellsScience, 348
Ying Yang, Kwangho Ri, Anyi Mei, Linfeng Liu, Minglei Hu, Tongfa Liu, Xiong Li, Hongwei Han (2015)
The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cellJournal of Materials Chemistry, 3
A. Buin, P. Pietsch, Jixian Xu, O. Voznyy, Alexander Ip, R. Comin, E. Sargent (2014)
Materials processing routes to trap-free halide perovskites.Nano letters, 14 11
Lili Wang, Christopher McCleese, A. Kovalsky, Yixin Zhao, C. Burda (2014)
Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2.Journal of the American Chemical Society, 136 35
Hui‐Seon Kim, I. Jang, Namyoung Ahn, Mansoo Choi, Antonio Guerrero, J. Bisquert, N. Park (2015)
Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell.The journal of physical chemistry letters, 6 22
Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, J. Etheridge, Angus Gray-Weale, U. Bach, Yi-bing Cheng, L. Spiccia (2014)
A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 53 37
Mengjin Yang, Yuanyuan Zhou, Y. Zeng, Chunsheng Jiang, N. Padture, K. Zhu (2015)
Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15%Advanced Materials, 27
Ardalan Armin, M. Velusamy, P. Burn, P. Meredith, A. Pivrikas (2012)
Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cellsApplied Physics Letters, 101
S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith (2013)
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 342
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
Young Kim, N. Jeon, J. Noh, Woon Yang, Jangwon Seo, J. Yun, A. Ho-baillie, Shujuan Huang, M. Green, J. Seidel, T. Ahn, S. Seok (2016)
Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar CellsAdvanced Energy Materials, 6
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, J. You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
H. Ishida, R. Ikeda, D. Nakamura (1986)
1H NMR Studies on the Reorientational Motions of Cations in Four Solid Phases of Methylammonium Iodide and the Self-Diffusion of Ions in Its Highest-Temperature Solid PhaseBulletin of the Chemical Society of Japan, 59
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Yin Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, Xin Zhang, P. Dowben, O. Mohammed, E. Sargent, O. Bakr (2015)
Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystalsScience, 347
Sang Kim, Kyu Lee, Hyeona Mun, Hyun Kim, S. Hwang, J. Roh, Daejin Yang, W. Shin, X. Li, Young Lee, G. Snyder, Sung Kim (2015)
Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectricsScience, 348
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
J. Manser, P. Kamat (2014)
Band filling with free charge carriers in organometal halide perovskitesNature Photonics, 8
AW Tsen (2012)
Tailoring electrical transport across grain boundaries in polycrystalline grapheneScience, 336
G. Juska, K. Arlauskas, M. Viliunas, J. Kǒcka (2000)
Extraction current transients: new method of study of charge transport in microcrystalline siliconPhysical review letters, 84 21
A. Tsen, L. Brown, M. Levendorf, F. Ghahari, Pinshane Huang, Robin Havener, C. Ruiz-Vargas, D. Muller, P. Kim, Jiwoong Park (2012)
Supplementary Materials for Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene
C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M. Nazeeruddin (2015)
High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursorsEnergy and Environmental Science, 8
Perovskite solar cells have attracted significant research efforts due to their remarkable performance, with certified power conversion efficiency now reaching 22%. Solution-processed perovskite thin films are polycrystalline, and grain boundaries are thought to be responsible for causing recombination and trapping of charge carriers. Here we report an effective and reproducible way of treating grain boundaries in CH3NH3PbI3 films deposited by means of a Lewis acid–base adduct approach. We show by high-resolution transmission electron microscopy lattice images that adding 6 mol% excess CH3NH3I to the precursor solution resulted in a CH3NH3I layer forming at the grain boundaries. This layer is responsible for suppressing non-radiative recombination and improving hole and electron extraction at the grain boundaries by forming highly ionic-conducting pathways. We report an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%) together with significantly reduced current–voltage hysteresis achieved by this grain boundary healing process.
Nature Energy – Springer Journals
Published: Jun 20, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.