Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. White, N. Belyaev, B. Turner (1999)
Preparation of site-specific antibodies to acetylated histones.Methods, 19 3
Fátima Santos, V. Zakhartchenko, M. Stojkovic, A. Peters, T. Jenuwein, E. Wolf, W. Reik, W. Dean (2003)
Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation EmbryosCurrent Biology, 13
L. O'neill, B. Turner (1995)
Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation‐dependent but transcription‐independent manner.The EMBO Journal, 14
P. Perry, S. Sauer, N. Billon, W. Richardson, Mikhail Spivakov, G. Warnes, F. Livesey, M. Merkenschlager, A. Fisher, V. Azuara (2004)
A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells upon Neural InductionCell Cycle, 3
V. Orlando (2000)
Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation.Trends in biochemical sciences, 25 3
Dmitry Pokholok, Christopher Harbison, S. Levine, Megan Cole, N. Hannett, Tong Lee, G. Bell, Kimberly Walker, P. Rolfe, Elizabeth Herbolsheimer, J. Zeitlinger, F. Lewitter, D. Gifford, R. Young (2005)
Genome-wide Map of Nucleosome Acetylation and Methylation in YeastCell, 122
R. Gregory, L. O'neill, Tamzin Randall, C. Fournier, S. Khosla, B. Turner, R. Feil (2002)
Inhibition of Histone Deacetylases Alters Allelic Chromatin Conformation at the Imprinted U2af1-rs1 Locus in Mouse Embryonic Stem Cells*The Journal of Biological Chemistry, 277
P. Rugg-Gunn, A. Ferguson-Smith, R. Pedersen (2005)
Epigenetic status of human embryonic stem cellsNature Genetics, 37
Henrietta Szutorisz, C. Canzonetta, A. Georgiou, Cheok-man Chow, L. Tora, N. Dillon (2005)
Formation of an Active Tissue-Specific Chromatin Domain Initiated by Epigenetic Marking at the Embryonic Stem Cell StageMolecular and Cellular Biology, 25
Mark Harvey, Peter Kaye (1990)
Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro.Development, 110 3
Katharine Arney, A. Fisher (2004)
Epigenetic aspects of differentiationJournal of Cell Science, 117
J. Adjaye, J. Huntriss, R. Herwig, Alia Benkahla, T. Brink, C. Wierling, C. Hultschig, Detlef Groth, M. Yaspo, H. Picton, R. Gosden, H. Lehrach (2005)
Primary Differentiation in the Human Blastocyst: Comparative Molecular Portraits of Inner Cell Mass and Trophectoderm CellsSTEM CELLS, 23
D. Norris, Dipika Patel, G. Kay, Graeme Penny, N. Brockdorff, S. Sheardown, S. Rastan (1994)
Evidence that random and imprinted Xist expression is controlled by preemptive methylationCell, 77
A. Ralston, J. Rossant (2005)
Genetic regulation of stem cell origins in the mouse embryoClinical Genetics, 68
Fátima Santos, W. Dean (2004)
Epigenetic reprogramming during early development in mammals.Reproduction, 127 6
N. Gilbert, S. Gilchrist, W. Bickmore (2005)
Chromatin organization in the mammalian nucleus.International review of cytology, 242
Peter Jones, R. Martienssen (2005)
A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop.Cancer research, 65 24
R. Sims, Chi-Fu Chen, H. Santos‐Rosa, T. Kouzarides, Smita Patel, D. Reinberg (2005)
Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains*Journal of Biological Chemistry, 280
W. Fischle, Boo Tseng, Holger Dormann, Beatrix Ueberheide, Benjamin Garcia, J. Shabanowitz, Donald Hunt, H. Funabiki, C. Allis (2005)
Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylationNature, 438
I. Schneider (1972)
Cell lines derived from late embryonic stages of Drosophila melanogaster.Journal of embryology and experimental morphology, 27 2
RI Gregory (1999)
10.1093/nar/27.22.e32Nucleic Acids Res., 27
Austin Smith (2001)
Embryo-derived stem cells: of mice and men.Annual review of cell and developmental biology, 17
I. Chambers, Douglas Colby, M. Robertson, J. Nichols, Sonia Lee, S. Tweedie, Austin Smith (2003)
Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem CellsCell, 113
K. Mitsui, Yoshimi Tokuzawa, Hiroaki Itoh, K. Segawa, M. Murakami, Kazutoshi Takahashi, Masayoshi Maruyama, M. Maeda, S. Yamanaka (2003)
The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES CellsCell, 113
R. Schneider, Andrew Bannister, F. Myers, A. Thorne, C. Crane-Robinson, T. Kouzarides (2004)
Histone H3 lysine 4 methylation patterns in higher eukaryotic genesNature Cell Biology, 6
M. Lachner, Roderick O’Sullivan, T. Jenuwein (2003)
An epigenetic road map for histone lysine methylationJournal of Cell Science, 116
Alan Handyside, Susan Hunter (1984)
A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes.The Journal of experimental zoology, 231 3
M. Merkenschlager, S. Amoils, E. Roldán, A. Rahemtulla, Eric O'Connor, A. Fisher, K. Brown (2004)
Centromeric Repositioning of Coreceptor Loci Predicts Their Stable Silencing and the CD4/CD8 Lineage ChoiceThe Journal of Experimental Medicine, 200
D. Schübeler, D. MacAlpine, David Scalzo, C. Wirbelauer, C. Kooperberg, F. Leeuwen, D. Gottschling, L. O'neill, B. Turner, J. Delrow, S. Bell, M. Groudine (2004)
The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote.Genes & development, 18 11
L. Boyer, Tong Lee, Megan Cole, S. Johnstone, S. Levine, J. Zucker, M. Guenther, Roshan Kumar, H. Murray, Richard Jenner, D. Gifford, D. Melton, R. Jaenisch, R. Young (2005)
Core Transcriptional Regulatory Circuitry in Human Embryonic Stem CellsCell, 122
D. Solter, B. Knowles (1975)
Immunosurgery of mouse blastocyst.Proceedings of the National Academy of Sciences of the United States of America, 72 12
D. Strumpf, C. Mao, Y. Yamanaka, A. Ralston, K. Chawengsaksophak, F. Beck, J. Rossant (2005)
Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst, 132
R. Gregory, R. Feil (1999)
Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity.Nucleic acids research, 27 22
Naoko Hattori, K. Nishino, Y. Ko, N. Hattori, J. Ohgane, Satoshi Tanaka, K. Shiota (2004)
Epigenetic Control of Mouse Oct-4 Gene Expression in Embryonic Stem Cells and Trophoblast Stem Cells*Journal of Biological Chemistry, 279
B. Turner, Gillian Fellows (1989)
Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells.European journal of biochemistry, 179 1
D. Sproul, N. Gilbert, W. Bickmore (2005)
The role of chromatin structure in regulating the expression of clustered genesNature Reviews Genetics, 6
J. Rice, S. Briggs, B. Ueberheide, C. Barber, J. Shabanowitz, D. Hunt, Y. Shinkai, C. Allis (2003)
Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains.Molecular cell, 12 6
M. Kuo, C. Allis (1999)
In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment.Methods, 19 3
C. Vakoc, S. Mandat, B. Olenchock, G. Blobel (2005)
Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin.Molecular cell, 19 3
Henrietta Szutorisz, N. Dillon (2005)
The epigenetic basis for embryonic stem cell pluripotency.BioEssays : news and reviews in molecular, cellular and developmental biology, 27 12
T. Hebbes, A. Thorne, C. Crane-Robinson (1988)
A direct link between core histone acetylation and transcriptionally active chromatin.The EMBO Journal, 7
L. O'neill, Tamzin Randall, Jayne Lavender, Hugh Spotswood, Jeannie Lee, B. Turner (2003)
X-linked genes in female embryonic stem cells carry an epigenetic mark prior to the onset of X inactivation.Human molecular genetics, 12 15
J. Martens, Roderick O’Sullivan, Ulrich Braunschweig, Susanne Opravil, Martin Radolf, P. Steinlein, T. Jenuwein (2005)
The profile of repeat‐associated histone lysine methylation states in the mouse epigenomeThe EMBO Journal, 24
N. Suka, Yuko Suka, A. Carmen, Jiansheng Wu, M. Grunstein (2001)
Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin.Molecular cell, 8 2
Annie Wiblin, W. Cui, A. Clark, W. Bickmore (2005)
Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cellsJournal of Cell Science, 118
J. Baxter, S. Sauer, A. Peters, R. John, Ruth Williams, Marie-Laure Caparros, Katharine Arney, A. Otte, T. Jenuwein, M. Merkenschlager, A. Fisher (2004)
Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytesThe EMBO Journal, 23
D. Robyr, M. Grunstein (2003)
Genomewide histone acetylation microarrays.Methods, 31 1
K. Nightingale, L. O'neill, B. Turner (2006)
Histone modifications: signalling receptors and potential elements of a heritable epigenetic code.Current opinion in genetics & development, 16 2
MB Harvey (1990)
10.1242/dev.110.3.963Development, 110
R. Margueron, P. Trojer, D. Reinberg (2005)
The key to development: interpreting the histone code?Current opinion in genetics & development, 15 2
L. O'neill, A. Keohane, Jayne Lavender, V. McCabe, E. Heard, P. Avner, N. Brockdorff, B. Turner (1999)
A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivationThe EMBO Journal, 18
J. Geisberg, K. Struhl (2004)
Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo.Nucleic acids research, 32 19
Chromatin immunoprecipitation (ChIP) defines the genomic distribution of proteins and their modifications but is limited by the cell numbers required (ideally >107). Here we describe a protocol that uses carrier chromatin and PCR, 'carrier' ChIP (CChIP), to permit analysis of as few as 100 cells. We assayed histone modifications at key regulator genes (such as Nanog, Pou5f1 (also known as Oct4) and Cdx2) by CChIP in mouse embryonic stem (ES) cells and in inner cell mass (ICM) and trophectoderm of cultured blastocysts. Activating and silencing modifications (H4 acetylation and H3K9 methylation) mark active and silent promoters as predicted, and we find close correlation between values derived from CChIP (1,000 ES cells) and conventional ChIP (5 × 107 ES cells). Studies on genes silenced in both ICM and ES cells (Cdx2, Cfc1, Hhex and Nkx2-2, also known as Nkx) show that the intensity of silencing marks is relatively diminished in ES cells, indicating a possible relaxation of some components of silencing on adaptation to culture.
Nature Genetics – Springer Journals
Published: Jun 11, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.