Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Nucleus: Finding the Sharing Limit of Heterogeneous Cores ILIAS VOUGIOUKAS, ARM Research and University of Southampton ANDREAS SANDBERG and STEPHAN DIESTELHORST, ARM Research BASHIR M. AL-HASHIMI and GEOFF V. MERRETT, University of Southampton Heterogeneous multi-processors are designed to bridge the gap between performance and energy efficiency in modern embedded systems. This is achieved by pairing Out-of-Order (OoO) cores, yielding performance through aggressive speculation and latency masking, with In-Order (InO) cores, that preserve energy through simpler design. By leveraging migrations between them, workloads can therefore select the best setting for any given energy/delay envelope. However, migrations introduce execution overheads that can hurt performance if they happen too frequently. Finding the optimal migration frequency is critical to maximize energy savings while maintaining acceptable performance. We develop a simulation methodology that can 1) isolate the hardware effects of migrations from the software, 2) directly compare the performance of different core types, 3) quantify the performance degradation and 4) calculate the cost of migrations for each case. To showcase our methodology we run mibench, a microbenchmark suite, and show that migrations can happen as fast as every 100k instructions with little performance loss. We also show that, contrary to numerous recent studies,
ACM Transactions on Embedded Computing Systems (TECS) – Association for Computing Machinery
Published: Oct 10, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.