Access the full text.
Sign up today, get DeepDyve free for 14 days.
V.P. Ferrera, KK Rudolph, J. Maunsell (1994)
Responses of neurons in the parietal and temporal visual pathways during a motion task, 14
C. Gross, C. Rocha-Miranda, D. Bender (1972)
Visual properties of neurons in inferotemporal cortex of the Macaque.Journal of neurophysiology, 35 1
I. Faillenot, J. Decety, M. Jeannerod (1999)
Human Brain Activity Related to the Perception of Spatial Features of ObjectsNeuroImage, 10
G. Tagaris, Seong-Gi Kim, J. Strupp, P. Andersen, Kâmil Uürbil, A. Georgopoulos (1996)
Quantitative relations between parietal activation and performance in mental rotationNeuroReport, 7
M. Corbetta, F. Miezin, G. Shulman, S. Petersen (1993)
A PET study of visuospatial attention, 13
S. Vanni, A. Revonsuo, R. Hari (1997)
Modulation of the Parieto-Occipital Alpha Rhythm during Object DetectionThe Journal of Neuroscience, 17
L. Petit, C. Orssaud, N. Tzourio, F. Crivello, A. Berthoz, and Mazoyer (1996)
Functional Anatomy of a Prelearned Sequence of Horizontal Saccades in HumansThe Journal of Neuroscience, 16
Karl Friston, A. Holmes, K. Worsley, J. Poline, C. Frith, Richard Frackowiak (1994)
Statistical parametric maps in functional imaging: A general linear approachHuman Brain Mapping, 2
Ewa Wojciulik, N. Kanwisher (1999)
The Generality of Parietal Involvement in Visual AttentionNeuron, 23
D. Gaffan, S. Harrison, E. Gaffan (1986)
Visual Identification following Inferotemporal Ablation in the MonkeyQuarterly Journal of Experimental Psychology, 38
R. Vogels, R. Saunders, G. Orban (1997)
Effects of Inferior Temporal Lesions on Two Types of Orientation Discrimination in the Macaque MonkeyEuropean Journal of Neuroscience, 9
H. Sakata, M. Taira (1994)
Parietal control of hand actionCurrent Opinion in Neurobiology, 4
M. Taira, R. Kawashima, Kentaro Inoue, Hiroshi Fukuda (1998)
A PET study of axis orientation discriminationNeuroReport, 9
A. Milner, D. Perrett, R. Johnston, P. Benson, T. Jordan, D. Heeley, D. Bettucci, F. Mortara, R. Mutani, E. Terazzi, D. Davidson (1991)
Perception and action in 'visual form agnosia'.Brain : a journal of neurology, 114 ( Pt 1B)
I. Faillenot, I. Toni, J. Decety, M. Grégoire, M. Jeannerod (1997)
Visual pathways for object-oriented action and object recognition: functional anatomy with PET.Cerebral cortex, 7 1
D. Cramon, G. Kerkhoff (1993)
On the Cerebral Organization of Elementary Visuospatial Perception
A. Owen, N. Herrod, D. Menon, John Clark, S. Downey, T. Carpenter, P. Minhas, F. Turkheimer, Emma Williams, T. Robbins, B. Sahakian, M. Petrides, J. Pickard (1999)
Redefining the functional organization of working memory processes within human lateral prefrontal cortexEuropean Journal of Neuroscience, 11
(1999)
Rate dependence of task-related cerebral activations: a PET-study
M. Corbetta, E. Akbudak, T. Conturo, A. Snyder, J. Ollinger, H. Drury, M. Linenweber, S. Petersen, M. Raichle, D. Essen, G. Shulman (1998)
A Common Network of Functional Areas for Attention and Eye MovementsNeuron, 21
Rufin Vogels, Guy Orban (1994)
Activity of inferior temporal neurons during orientation discrimination with successively presented gratings.Journal of neurophysiology, 71 4
J. Maunsell, G. Sclar, T. Nealey, Derryl DePriest (1991)
Extraretinal representations in area V4 in the macaque monkeyVisual Neuroscience, 7
M. Eacott, D. Gaffan (1991)
The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapesBehavioural Brain Research, 46
K Friston, Tc Frith, P. Liddle, Richard Frackowiak
Journal of Cerebral Blood Flow and Metabolism Comparing Functional (pet) Images: the Assessment of Significant Change
S. Oostende, S. Sunaert, P. Hecke, G. Marchal, G. Orban, Dienst Radiologie (1997)
The kinetic occipital (KO) region in man: an fMRI study.Cerebral cortex, 7 7
Leslie Ungerleider (1982)
Two cortical visual systems
P. DeWeerd, Modesto Peralta, R. Desimone, Leslie Ungerleider (1999)
Loss of attentional stimulus selection after extrastriate cortical lesions in macaquesNature Neuroscience, 2
M. Webster, J. Bachevalier, Leslie Ungerleider (1994)
Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys.Cerebral cortex, 4 5
Rik Vandenberghe, P. Dupont, B. Bruyn, G. Bormans, J. Michiels, L. Mortelmans, G. Orban (1996)
The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention.Brain : a journal of neurology, 119 ( Pt 4)
(1999)
Neural correlates of manipulation and storage during working memory
R. LaMotte, C. Acun˜a (1978)
Defects in accuracy of reaching after removal of posterior parietal cortex in monkeysBrain Research, 139
Journalof Neurophysioldgy, Keiji Tanaka, H. Saito, Yoshiro F’UKADA, M. Moriya (1991)
Coding visual images of objects in the inferotemporal cortex of the macaque monkey.Journal of neurophysiology, 66 1
L. Cornette, P. Dupont, G. Bormans, L. Mortelmans, G. Orban (2001)
Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks.Cerebral cortex, 11 1
(2000)
Impaired attentional ®ltring in a patient with bilateral parietal lesions
A. Holmes, Karl Friston (1998)
Generalisability, Random Effects & Population InferenceNeuroImage, 7
A. Nobre, G. Sebestyen, D. Gitelman, M. Mesulam, Richard Frackowiak, C. Frith (1997)
Functional localization of the system for visuospatial attention using positron emission tomography.Brain : a journal of neurology, 120 ( Pt 3)
B. Gulyás, D. Ottoson, P. Roland (1993)
Functional Organisation of the Human Visual Cortex
S. Sunaert, P. Hecke, G. Marchal, G. Orban (1999)
Motion-responsive regions of the human brainExperimental Brain Research, 127
M. Perenin, A. Vighetto (1988)
Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects.Brain : a journal of neurology, 111 ( Pt 3)
P. Jolicœur, S. Regehr, L. Smith, Garth Smith (1985)
Mental rotation of representations of two-dimensional and three-dimensional objectsCanadian Journal of Psychology\/revue Canadienne De Psychologie, 39
E. Miller, C. Erickson, R. Desimone (1996)
Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the MacaqueThe Journal of Neuroscience, 16
M. Shadlen, W. Newsome (1996)
Motion perception: seeing and deciding.Proceedings of the National Academy of Sciences of the United States of America, 93 2
E. Holmes, C. Gross (1984)
Effects of inferior temporal lesions on discrimination of stimuli differing in orientation, 4
ã Federation of European Neuroscience Societies
M. Platt, P. Glimcher (1999)
Neural correlates of decision variables in parietal cortexNature, 400
R. Vogels (1999)
Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell studyEuropean Journal of Neuroscience, 11
Carrie McAdams, J. Maunsell (1999)
Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4The Journal of Neuroscience, 19
G. Orban, P. Dupont, B. Bruyn, R. Vandenberghe, A. Rosier, L. Mortelmans (1998)
Human brain activity related to speed discrimination tasksExperimental Brain Research, 122
R. Desimone, T. Albright, C. Gross, C. Bruce (1984)
Stimulus-selective properties of inferior temporal neurons in the macaque, 4
S. Courtney, L. Petit, J. Maisog, Leslie Ungerleider, J. Haxby (1998)
An area specialized for spatial working memory in human frontal cortex.Science, 279 5355
R. Vogels, G. Orban (1986)
Decision factors affecting line orientation judgments in the method of single stimuliPerception & Psychophysics, 40
R. Frackowiak, S. Zeki, J Poline, Karl Friston (1996)
A Critique of a New Analysis Proposed for Functional NeuroimagingEuropean Journal of Neuroscience, 8
H. Spitzer, R. Desimone, J. Moran (1988)
Increased attention enhances both behavioral and neuronal performance.Science, 240 4850
C. Gross (1978)
Inferior temporal lesions do not impair discrimination of rotated patterns in monkeys.Journal of comparative and physiological psychology, 92 6
N. Logothetis, J. Pauls, T. Poggio (1995)
Shape representation in the inferior temporal cortex of monkeysCurrent Biology, 5
S. Ferraina, Paul Johnson, M. Garasto, A. Battaglia-Mayer, L. Ercolani, Luigi Bianchi, Francesco Lacquaniti, Roberto Caminiti (1997)
Combination of hand and gaze signals during reaching: activity in parietal area 7 m of the monkey.Journal of neurophysiology, 77 2
David Tukey (1986)
A Philosophical and Empirical Analysis of Subjects’ Modes of Inquiry in Wason's 2–4–6 TaskQuarterly Journal of Experimental Psychology, 38
P. Dupont, R. Vogels, Rik Vandenberghe, A. Rosier, L. Cornette, G. Bormans, L. Mortelmans, G. Orban (1998)
Regions in the human brain activated by simultaneous orientation discrimination: a study with positron emission tomographyEuropean Journal of Neuroscience, 10
G. Orban, P. Dupont, R. Vogels, G. Bormans, L. Mortelmans (1997)
Human Brain Activity Related to Orientation Discrimination TasksEuropean Journal of Neuroscience, 9
(1997)
Statistical modelling of low-frequency confounds
M. Goodale, A. Milner (1992)
Separate visual pathways for perception and actionTrends in Neurosciences, 15
B. Gulyás, P. Roland (1995)
Cortical fields participating in spatial frequency and orientation discrimination: Functinal anatomy by positron emission tomographyHuman Brain Mapping, 3
U. Leonards, S. Sunaert, P. Hecke, G. Orban (2000)
Attention Mechanisms in Visual SearchAn fMRI StudyJournal of Cognitive Neuroscience, 12
L. Cornette, P. Dupont, A. Rosier, S. Sunaert, P. Hecke, J. Michiels, L. Mortelmans, G. Orban (1998)
Human brain regions involved in direction discrimination.Journal of neurophysiology, 79 5
J. Haxby, B. Horwitz, Leslie Ungerleider, J. Maisog, P. Pietrini, C. Grady (1994)
The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations, 14
V. Walsh, S. Butler (1996)
The effects of visual cortex lesions on the perception of rotated shapesBehavioural Brain Research, 76
We used functional magnetic resonance imaging to compare the human brain regions involved in orientation discrimination of two‐dimensional (2D) objects and gratings. The orientation discrimination tasks, identification and successive discrimination, were contrasted to a dimming detection control condition with identical retinal input. Regions involved in orientation discrimination were very similar for the two types of tasks and for the two types of stimuli and both belonged to the dorsal and ventral visual pathways. They included posterior occipital, lingual, posterior fusiform, inferior temporal, dorsal intraparietal and medial parietal regions. The main difference between the two types of stimuli was a larger activation of precuneus when 2D objects were used compared to gratings. The main difference between discrimination tasks was an enhanced activity, at the group level, in superior frontal sulcus in identification compared to successive discrimination, and at least at the single subject level, a larger activity in right fusiform cortex in successive discriminations compared to identification. Thus, in contradiction to generally accepted views, orientation discrimination of gratings and objects involve largely similar networks including both ventral and dorsal visual regions.
European Journal of Neuroscience – Wiley
Published: Feb 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.