Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans

Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Microbiology Springer Journals

Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans

Loading next page...
 
/lp/springer-journals/antifungal-and-antibiofilm-in-vitro-activities-of-ursolic-acid-on-RpHCCOkGac

References (39)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0343-8651
eISSN
1432-0991
DOI
10.1007/s00284-022-02992-5
Publisher site
See Article on Publisher Site

Abstract

Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.

Journal

Current MicrobiologySpringer Journals

Published: Oct 1, 2022

There are no references for this article.