Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2002)
Food Webs. University of Chicago Press, Chicago
B. Deagle, N. Gales, K. Evans, S. Jarman, Sarah Robinson, Rowan Trebilco, M. Hindell (2007)
Studying Seabird Diet through Genetic Analysis of Faeces: A Case Study on Macaroni Penguins (Eudyptes chrysolophus)PLoS ONE, 2
T. Hall (1999)
BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT
R. Gales, D. Pemberton, Cc Lu, MR Clarke (1993)
Cephalopod diet of the Australian fur seal: Variation due to location, season and sample typeMarine and Freshwater Research, 44
R. Ward, B. Holmes, W. White (2008)
DNA barcoding Australasian chondrichthyans: results and potential uses in conservationMarine and Freshwater Research, 59
D. Wheeler, Maithreyan Srinivasan, M. Egholm, Yufeng Shen, Lei Chen, A. McGuire, Wenshe He, Yi-Ju Chen, V. Makhijani, G. Roth, Xavier Gomes, K. Tartaro, K. Tartaro, Faheem Niazi, C. Turcotte, G. Irzyk, J. Lupski, J. Lupski, C. Chinault, Xing-Zhi Song, Yue Liu, Ye Yuan, L. Nazareth, X. Qin, D. Muzny, M. Margulies, G. Weinstock, G. Weinstock, R. Gibbs, R. Gibbs, J. Rothberg, J. Rothberg (2008)
The complete genome of an individual by massively parallel DNA sequencingNature, 452
D. Tollit, A. Schulze, A. Trites, P. Olesiuk, S. Crockford, T. Gelatt, R. Ream, K. Miller (2009)
Development and application of DNA techniques for validating and improving pinniped diet estimates.Ecological applications : a publication of the Ecological Society of America, 19 4
S. Jarman, B. Deagle, B. Deagle, Nicholas Gales (2004)
Group‐specific polymerase chain reaction for DNA‐based analysis of species diversity and identity in dietary samplesMolecular Ecology, 13
M. Miya, H. Takeshima, Hiromitsu Endo, Naoya Ishiguro, Jun Inoue, T. Mukai, Takashi Satoh, Motoomi Yamaguchi, A. Kawaguchi, K. Mabuchi, S. Shirai, M. Nishida (2003)
Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences.Molecular phylogenetics and evolution, 26 1
N. Gales, Aj Cheal (1992)
Estimating diet composition of the Australian sea lion (Neophoa cinerea) from scat analysis: an unrliable techniqueWildlife Research, 19
F. Wintzingerode, U. Göbel, E. Stackebrandt (1997)
Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis.FEMS microbiology reviews, 21 3
Hege Vestheim, S. Jarman (2008)
Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachsFrontiers in Zoology, 5
S. Iverson, C. Field, W. Bowen, W. Blanchard (2004)
QUANTITATIVE FATTY ACID SIGNATURE ANALYSIS: A NEW METHOD OF ESTIMATING PREDATOR DIETSEcological Monographs, 74
J. Burger, M. Patten, J. Rotenberry, R. Redak (1999)
Foraging ecology of the California gnatcatcher deduced from fecal samplesOecologia, 120
M. Kvitrud, S. Riemer, R. Brown, M. Bellinger, M. Banks (2005)
Pacific harbor seals (Phoca vitulina) and salmon: genetics presents hard numbers for elucidating predator-prey dynamicsMarine Biology, 147
B. Deagle, D. Tollit, S. Jarman, M. Hindell, A. Trites, N. Gales (2005)
Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lionsMolecular Ecology, 14
G. Dunshea, N. Barros, R. Wells, N. Gales, M. Hindell, S. Jarman (2008)
Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey systemBulletin of Entomological Research, 98
J. Arnould, M. Hindell (2001)
Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus)Canadian Journal of Zoology, 79
R. Sipos, Anna Székely, M. Palatinszky, S. Révész, K. Márialigeti, M. Nikolausz (2007)
Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis.FEMS microbiology ecology, 60 2
I. Matějusová, F. Doig, S. Middlemas, S. Mackay, A. Douglas, J. Armstrong, C. Cunningham, M. Snow (2008)
Using quantitative real‐time PCR to detect salmonid prey in scats of grey Halichoerus grypus and harbour Phoca vitulina seals in Scotland – an experimental and field studyJournal of Applied Ecology, 45
R. Ward, T. Zemlak, B. Innes, P. Last, P. Hebert (2005)
DNA barcoding Australia's fish speciesPhilosophical Transactions of the Royal Society B: Biological Sciences, 360
A. Passmore, S. Jarman, K. Swadling, S. Kawaguchi, A. McMinn, S. Nicol (2006)
DNA as a Dietary Biomarker in Antarctic Krill, Euphausia superbaMarine Biotechnology, 8
Ruth Casper, S. Jarman, B. Deagle, N. Gales, M. Hindell (2007)
Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known dietJournal of Experimental Marine Biology and Ecology, 347
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
A. Valentini, C. Miquel, M. Nawaz, E. Bellemain, E. Coissac, F. Pompanon, L. Gielly, C. Cruaud, G. Nascetti, P. Wincker, J. Swenson, P. Taberlet (2009)
New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approachMolecular Ecology Resources, 9
Y. Cherel, K. Hobson, C. Guinet, C. Vanpé (2007)
Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean.The Journal of animal ecology, 76 4
B. Deagle, D. Tollit (2007)
Quantitative analysis of prey DNA in pinniped faeces: potential to estimate diet composition?Conservation Genetics, 8
R. Kirkwood, R. Gales, A. Terauds, J. Arnould, D. Pemberton, P. Shaughnessy, A. Mitchell, J. Gibbens (2005)
PUP PRODUCTION AND POPULATION TRENDS OF THE AUSTRALIAN FUR SEAL (ARCTOCEPHALUS PUSILLUS DORIFERUS)Marine Mammal Science, 21
M. Jobling (1987)
Marine mammal faeces samples as indicators of prey importance - A source of error in bioenergetics studiesSarsia, 72
S. Evans, J. Middleton (1998)
A Regional Model of Shelf Circulation near Bass Strait: A New Upwelling MechanismJournal of Physical Oceanography, 28
A. Valentini, F. Pompanon, P. Taberlet (2009)
DNA barcoding for ecologists.Trends in ecology & evolution, 24 2
J. Nejstgaard, M. Frischer, Paolo Simonelli, C. Troedsson, M. Brakel, Filiz Adiyaman, A. Sazhin, L. Artigas (2008)
Quantitative PCR to estimate copepod feedingMarine Biology, 153
Palumbi, S. Palumbi, S. Palumbi (1996)
Nucleic acids II: the polymerase chain reaction
K. Parsons, S. Piertney, S. Middlemas, Phillip Hammond, J. Armstrong (2005)
DNA-based identification of salmonid prey species in seal faecesJournal of Zoology, 266
W. Bowen, D. Tully, D. Boness, B. Bulheier, G. Marshall (2002)
Prey-dependent foraging tactics and prey profitability in a marine mammalMarine Ecology Progress Series, 244
W. Symondson (2002)
Molecular identification of prey in predator dietsMolecular Ecology, 11
R. Kirkwood, Fiona Hume, M. Hindell (2008)
Sea temperature variations mediate annual changes in the diet of Australian fur seals in Bass StraitMarine Ecology Progress Series, 369
R. King, D. Read, M. Traugott, W. Symondson (2008)
Molecular analysis of predation: a review of best practice for DNA-based approaches.Molecular ecology, 17 4
D. Tollit, M. Steward, P. Thompson, G. Pierce, M. Santos, S. Hughes (1997)
Species and size differences in the digestion of otoliths and beaks: Implications for estimates of pinniped diet compositionCanadian Journal of Fisheries and Aquatic Sciences, 54
P. Lockhart, M. Steel, M. Hendy, D. Penny (1994)
Recovering evolutionary trees under a more realistic model of sequence evolution.Molecular biology and evolution, 11 4
J. Middleton, J. Bye (2007)
A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to PortlandProgress in Oceanography, 75
J. Dohm, C. Lottaz, T. Borodina, H. Himmelbauer (2008)
Substantial biases in ultra-short read data sets from high-throughput DNA sequencingNucleic Acids Research, 36
M. Margulies, M. Egholm, William Altman, S. Attiya, J. Bader, Lisa Bemben, J. Berka, Michael Braverman, Yi-Ju Chen, Zhoutao Chen, Scott Dewell, Lei Du, J. Fierro, Xavier Gomes, B. Godwin, Wenshe He, S. Helgesen, Chun Ho, G. Irzyk, Szilveszter Jando, Maria Alenquer, T. Jarvie, K. Jirage, Jong-Bum Kim, James Knight, Janna Lanza, J. Leamon, S. Lefkowitz, M. Lei, Jing Li, K. Lohman, Hong Lu, V. Makhijani, K. McDade, M. McKenna, E. Myers, E. Nickerson, J. Nobile, Ramona Plant, Bernard Puc, M. Ronan, G. Roth, G. Sarkis, J. Simons, J. Simpson, Maithreyan Srinivasan, K. Tartaro, A. Tomasz, K. Vogt, G. Volkmer, Shally Wang, Yong Wang, M. Weiner, Pengguang Yu, R. Begley, J. Rothberg (2005)
Genome sequencing in microfabricated high-density picolitre reactorsNature, 437
M. Meyer, U. Stenzel, S. Myles, Kay Prüfer, M. Hofreiter (2007)
Targeted high-throughput sequencing of tagged nucleic acid samplesNucleic Acids Research, 35
Ruth Casper, S. Jarman, N. Gales, M. Hindell (2007)
Combining DNA and morphological analyses of faecal samples improves insight into trophic interactions: a case study using a generalist predatorMarine Biology, 152
Y. Hongoh, Hiroe Yuzawa, M. Ohkuma, T. Kudo (2003)
Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment.FEMS microbiology letters, 221 2
W. Bowen (2000)
Reconstruction of pinniped diets: accounting for complete digestion of otoliths and cephalopod beaksCanadian Journal of Fisheries and Aquatic Sciences, 57
M. Vences, Meike Thomas, A. Meijden, Y. Chiari, D. Vieites (2005)
Comparative performance of the 16S rRNA gene in DNA barcoding of amphibiansFrontiers in Zoology, 2
Chad Nordstrom, L. Wilson, S. Iverson, D. Tollit (2008)
Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studiesMarine Ecology Progress Series, 360
S. Goldsworthy, C. Bulman, X. He, C. Littnan, J. Larcombe (2003)
Trophic interactions between marine mammals and Australian fisheries: An ecosystem approach
G. Harper, Robert King, Ciara Dodd, James Harwood, David Glen, M. Bruford, W. Symondson (2005)
Rapid screening of invertebrate predators for multiple prey DNA targetsMolecular Ecology, 14
J. Thompson, D. Higgins, T. Gibson (1994)
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic acids research, 22 22
B. Deagle, B. Deagle, J. Eveson, S. Jarman (2006)
Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faecesFrontiers in Zoology, 3
J. Young, T. Lamb, D. Le, R. Bradford, A. Whitelaw (1997)
Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania, AustraliaEnvironmental Biology of Fishes, 50
M. Small, T. Beacham, R. Withler, R. Nelson (1998)
Discriminating coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia, using microsatellite DNA markersMolecular Ecology, 7
P. Olesiuk (2008)
Annual prey consumption by harbor seals ( Phoca vitulinaJ in the Strait of Georgia , British Columbia
M. Hudson (2008)
Sequencing breakthroughs for genomic ecology and evolutionary biologyMolecular Ecology Resources, 8
Jonas Binladen, M. Gilbert, Jonathan Bollback, F. Panitz, C. Bendixen, R. Nielsen, E. Willerslev (2007)
The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple Homolog Amplification Products by 454 Parallel SequencingPLoS ONE, 2
Cheryl Prokopowich, T. Gregory, T. Crease (2003)
The correlation between rDNA copy number and genome size in eukaryotes.Genome, 46 1
CL Littnan, Jpy Arnould, RG Harcourt (2007)
Effect of proximity to the shelf edge on the diet of female Australian fur sealsMarine Ecology Progress Series, 338
M. Purcell, G. Mackey, E. LaHood, H. Huber, L. Park (2004)
Molecular methods for the genetic identification of salmonid prey from Pacific harbor seal (Phoca vitulina richardsi ) scat
Fiona Hume, M. Hindell, D. Pemberton, Rosemary Gales (2004)
Spatial and temporal variation in the diet of a high trophic level predator, the Australian fur seal (Arctocephalus pusillus doriferus)Marine Biology, 144
(1993)
Australian Fisheries Resources. Bureau of Rural Science and Fisheries Resource Development Corporation Publication, Canberra, Australia
DNA‐based techniques have proven useful for defining trophic links in a variety of ecosystems and recently developed sequencing technologies provide new opportunities for dietary studies. We investigated the diet of Australian fur seals (Arctocephalus pusillus doriferus) by pyrosequencing prey DNA from faeces collected at three breeding colonies across the seals’ range. DNA from 270 faecal samples was amplified with four polymerase chain reaction primer sets and a blocking primer was used to limit amplification of fur seal DNA. Pooled amplicons from each colony were sequenced using the Roche GS‐FLX platform, generating > 20 000 sequences. Software was developed to sort and group similar sequences. A total of 54 bony fish, 4 cartilaginous fish and 4 cephalopods were identified based on the most taxonomically informative amplicons sequenced (mitochondrial 16S). The prevalence of sequences from redbait (Emmelichthys nitidus) and jack mackerel (Trachurus declivis) confirm the importance of these species in the seals’ diet. A third fish species, blue mackerel (Scomber australasicus), may be a more important prey species than previously recognised. There were major differences in the proportions of prey DNA recovered in faeces from different colonies, probably reflecting differences in prey availability. Parallel hard‐part analysis identified largely the same main prey species as did the DNA‐based technique, but with lower species diversity and no remains from cartilaginous prey. The pyrosequencing approach presented significantly expands the capabilities of DNA‐based methods of dietary analysis and is suitable for large‐scale diet investigations on a broad range of animals.
Molecular Ecology – Wiley
Published: May 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.