Access the full text.
Sign up today, get DeepDyve free for 14 days.
V. Boer, J. Winde, J. Pronk, M. Piper (2003)
The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur*The Journal of Biological Chemistry, 278
J. Gancedo (1998)
Yeast Carbon Catabolite RepressionMicrobiology and Molecular Biology Reviews, 62
Benjamin Gonzalez, J. François, M. Renaud (1997)
A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanolYeast, 13
J. Hou, Nuno Lages, M. Oldiges, G. Vemuri (2009)
Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.Metabolic engineering, 11 4-5
(2011)
PHYSIOLOGY OF YEAST STRAINS WITH ALTERED NAD LEVELS 2245
F. Palmieri, B. Rieder, A. Ventrella, Emanuela Blanco, P. Do, A. Nunes‐Nesi, A. Trauth, G. Fiermonte, J. Tjaden, G. Agrimi, Simon Kirchberger, Eleonora Paradies, A. Fernie, H. Neuhaus (2009)
Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins*The Journal of Biological Chemistry, 284
S. Berríos-Rivera, K. San, G. Bennett (2002)
The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.Metabolic engineering, 4 3
F. Lisa, Mathias Ziegler (2001)
Pathophysiological relevance of mitochondria in NAD+ metabolismFEBS Letters, 492
S. Todisco, G. Agrimi, Alessandra Castegna, F. Palmieri (2004)
Identification of the Mitochondrial NAD+ Transporter in Saccharomyces cerevisiae*Journal of Biological Chemistry, 281
Hongying Yang, Tianle Yang, J. Baur, E. Perez, T. Matsui, J. Carmona, Dudley Lamming, N. Souza-Pinto, V. Bohr, A. Rosenzweig, R. Cabo, A. Sauve, D. Sinclair (2007)
Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell SurvivalCell, 130
M. Ziegler (2000)
New functions of a long-known molecule. Emerging roles of NAD in cellular signaling.European journal of biochemistry, 267 6
A. Tobin, B. Djerdjour, E. Journet, M. Neuburger, R. Douce (1980)
Effect of NAD on Malate Oxidation in Intact Plant Mitochondria.Plant physiology, 66 2
M. Erecínska, David Wilson (2005)
Regulation of cellular energy metabolismThe Journal of Membrane Biology, 70
G. Vemuri, E. Altman, Dipen Sangurdekar, A. Khodursky, A. Khodursky, M. Eiteman (2006)
Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox RatioApplied and Environmental Microbiology, 72
J. Hou, G. Vemuri (2009)
Using regulatory information to manipulate glycerol metabolism in Saccharomyces cerevisiaeApplied Microbiology and Biotechnology, 85
G. Kresze, H. Ronft (1981)
Pyruvate dehydrogenase complex from baker's yeast. 1. Purification and some kinetic and regulatory properties.European journal of biochemistry, 119 3
G. Vemuri, M. Eiteman, J. McEwen, L. Olsson, Jens Nielsen (2007)
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiaeProceedings of the National Academy of Sciences, 104
G. Kresze, H. Ronft (1981)
Pyruvate Dehydrogenase Complex from Baker's YeastFEBS Journal, 119
K. Cain, D. Griffiths (1977)
Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria.The Biochemical journal, 162 3
J. Dijken, J. Bauer, L. Brambilla, P. Duboc, J. François, C. Gancedo, M. Giuseppin, J. Heijnen, M. Hoare, H. Lange, E. Madden, P. Niederberger, J. Nielsen, J. Parrou, T. Petit, D. Porro, M. Reuss, N. Riel, M. Rizzi, H. Steensma, H. Steensma, C. Verrips, J. Vindeløv, J. Pronk (2000)
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains.Enzyme and microbial technology, 26 9-10
Su-Ju Lin, P. Defossez, L. Guarente (2000)
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.Science, 289 5487
C. Verduyn, E. Postma, W. Scheffers, J. Dijken (1992)
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous‐culture study on the regulation of respiration and alcoholic fermentationYeast, 8
A. Igamberdiev, P. Gardeström (2003)
Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves.Biochimica et biophysica acta, 1606 1-3
Fan Wu, Feng Yang, K. Vinnakota, D. Beard (2007)
Computer Modeling of Mitochondrial Tricarboxylic Acid Cycle, Oxidative Phosphorylation, Metabolite Transport, and Electrophysiology*Journal of Biological Chemistry, 282
A. Goldstein, J. McCusker (1999)
Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiaeYeast, 15
H. Aguilaniu, L. Gustafsson, M. Rigoulet, T. Nyström (2001)
Protein Oxidation in G0 Cells of Saccharomyces cerevisiae Depends on the State Rather than Rate of Respiration and Is Enhanced in pos9 but Notyap1 Mutants*The Journal of Biological Chemistry, 276
A. Veiga, J. Arrabaça, M. Loureiro-Dias (2003)
Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts.FEMS yeast research, 3 3
Jochen Förster, Iman Famili, P. Fu, B. Palsson, J. Nielsen (2003)
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network.Genome research, 13 2
Y. Gibon, F. Larher (1997)
Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium.Analytical biochemistry, 251 2
H. Holzer (1961)
Regulation of carbohydrate metabolism by enzyme competition.Cold Spring Harbor symposia on quantitative biology, 26
U. Theobald, W. Mailinger, Michael Baltes, M. Rizzi, M. Reuss (1997)
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations.Biotechnology and bioengineering, 55 2
P. Herrero, R. Fernández, F. Moreno (1985)
Differential sensitivities to glucose and galactose repression of gluconeogenic and respiratory enzymes from Saccharomyces cerevisiaeArchives of Microbiology, 143
I. Hirosawa, Kazuo Aritomi, H. Hoshida, Susumu Kashiwagi, Yoshinori Nishizawa, R. Akada (2004)
Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocolApplied Microbiology and Biotechnology, 65
Peter Belenky, Frances Racette, Katrina Bogan, Julie McClure, Jeffrey Smith, Charles Brenner (2007)
Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+Cell, 129
P. Hoek, M. Flikweert, Q. Aart, H. Steensma, J. Dijken, J. Pronk (1998)
Effects of Pyruvate Decarboxylase Overproduction on Flux Distribution at the Pyruvate Branch Point inSaccharomyces cerevisiaeApplied and Environmental Microbiology, 64
Samira Boubekeur, Nadine Camougrand, O. Bunoust, M. Rigoulet, Bernard Guérin (2001)
Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae.European journal of biochemistry, 268 19
Jacques Bourguignon, Michel Neuburger, Roland Douce (1988)
Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase.The Biochemical journal, 255 1
D. Porro, L. Brambilla, L. Alberghina (2003)
Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae.FEMS microbiology letters, 229 2
Applied and Environmental Microbiology – Unpaywall
Published: Feb 19, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.