Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Zheng, D. Tran, B. Busche, G. Fryxell, R. Addleman, T. Zemanian, C. Aardahl (2005)
Ethylenediamine-modified SBA-15 as Regenerable CO2 SorbentIndustrial & Engineering Chemistry Research, 44
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey (2004)
A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration.Chemistry, 10 6
A. Sudik, Andrew Millward, N. Ockwig, A. Côté, Jaheon Kim, O. Yaghi (2005)
Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra.Journal of the American Chemical Society, 127 19
R. Blom, R.H. Heyn, O. Swang, H. Fjellvåg, K.O. Kongshaug, R.K. Birkeland Nielsen (2004)
Hydrogen storage in porous coordination polymersChem. Eng. Trans., 4
N. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, T. Devic, C. Serre, T. Loiseau, G. Férey (2007)
Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experimentsAdsorption, 13
J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson, E. Sheppard, S. Mccullen, J. Higgins, J. Schlenker (1992)
A new family of mesoporous molecular sieves prepared with liquid crystal templatesJournal of the American Chemical Society, 114
N. Hiyoshi, K. Yogo, T. Yashima (2005)
Adsorption of Carbon Dioxide on Aminosilane-modified Mesoporous SilicaJournal of The Japan Petroleum Institute, 48
K. Uemura, R. Matsuda, S. Kitagawa (2005)
Flexible microporous coordination polymersJournal of Solid State Chemistry, 178
Helen Huang, R. Yang, D. Chinn, Curtis Munson (2003)
Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural GasIndustrial & Engineering Chemistry Research, 42
A. Wong-Foy, A. Matzger, O. Yaghi (2006)
Exceptional H2 saturation uptake in microporous metal-organic frameworks.Journal of the American Chemical Society, 128 11
Rajesh Khatri, S. Chuang, Y. Soong, M. Gray (2005)
Carbon Dioxide Capture by Diamine-Grafted SBA-15: A Combined Fourier Transform Infrared and Mass Spectrometry StudyIndustrial & Engineering Chemistry Research, 44
Stuart James (2003)
Metal-organic frameworks.Chemical Society reviews, 32 5
Xiaochun Xu, Chunshan Song, J. Andresen, B. Miller, A. Scaroni (2002)
Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 CaptureEnergy & Fuels, 16
O. Ohmori, M. Fujita (2004)
Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4'-bipyridine) square grid complex.Chemical communications, 14
L. Dai (2004)
Chiral metal-organic assemblies--a new approach to immobilizing homogeneous asymmetric catalysts.Angewandte Chemie, 43 43
A.R. Millward, O.M. Yaghi (2005)
Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperatureJ. Am. Chem. Soc., 127
H. Chae, Diana Siberio-Pérez, Jaheon Kim, Y. Go, M. Eddaoudi, A. Matzger, M. O'Keeffe, O. Yaghi (2004)
A route to high surface area, porosity and inclusion of large molecules in crystalsNature, 427
D. Dybtsev, Hyungphil Chun, Kimoon Kim (2004)
Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior.Angewandte Chemie, 43 38
S. Noro, S. Kitagawa, M. Kondo, K. Seki (2000)
A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n]Angewandte Chemie, 39
C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck (1992)
Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanismNature, 359
P. Hagrman, D. Hagrman, J. Zubieta (1999)
Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides.Angewandte Chemie, 38 18
E. Magid, B. Turbeck (1968)
The rates of the spontaneous hydration of CO2 and the reciprocal reaction in neutral aqueous solutions between 0° and 38°Biochimica et Biophysica Acta, 165
P. Harlick, F. Tezel (2004)
An experimental adsorbent screening study for CO2 removal from N2Microporous and Mesoporous Materials, 76
M. Zaworotko (2000)
Nanoporous Structures by Design.Angewandte Chemie, 39 17
U. Mueller, M. Schubert, F. Teich, H. Puetter, Kerstin Schierle-Arndt, J. Pastre (2006)
Metal–organic frameworks—prospective industrial applicationsJournal of Materials Chemistry, 16
G. Knowles, Jeremy Graham, S. Delaney, A. Chaffee (2005)
Aminopropyl-functionalized mesoporous silicas as CO2 adsorbentsFuel Processing Technology, 86
J. Seo, D. Whang, Hyoyoung Lee, S. Jun, Jinho Oh, Youngjin Jeon, Kimoon Kim (2000)
A homochiral metal–organic porous material for enantioselective separation and catalysisNature, 404
S. Bourrelly, P. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey (2005)
Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47.Journal of the American Chemical Society, 127 39
A. Chang, S. Chuang, M. Gray, Y. Soong (2003)
In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilaneEnergy & Fuels, 17
Sangil Kim, J. Ida, V. Guliants, Jerry Lin (2005)
Tailoring pore properties of MCM-48 silica for selective adsorption of CO2.The journal of physical chemistry. B, 109 13
L. Pauling (1939)
The Nature Of The Chemical Bond
O. Leal, C. Bolívar, C. Ovalles, Juan García, Y. Espidel (1995)
Reversible adsorption of carbon dioxide on amine surface-bonded silica gelInorganica Chimica Acta, 240
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (2004)
Gaussian 03, Revision B0.4
G. Knowles, S. Delaney, A. Chaffee (2005)
Amine-functionalised mesoporous silicas as CO2 adsorbents, 156
E. Magid, B.O. Turbeck (1968)
Rates of spontaneous hydration of CO2 and reciprocal reaction in neutral aqueous solutions between 0 and 38 degreesBiochim. Biophys. Acta, 165
S. Batten, R. Robson (1998)
Interpenetrating Nets: Ordered, Periodic Entanglement.Angewandte Chemie, 37 11
A. Fletcher, K. Thomas, M. Rosseinsky (2005)
Flexibility in metal-organic framework materials: impact on sorption propertiesJournal of Solid State Chemistry, 178
R. Nunge, W. Gill (1963)
Gas-liquid kinetics: The absorption of carbon dioxide in diethanolamineAiche Journal, 9
J. Rowsell, O. Yaghi (2005)
Strategies for hydrogen storage in metal--organic frameworks.Angewandte Chemie, 44 30
R. Siriwardane, M. Shen, E. Fisher, J. Poston (2001)
Adsorption of CO2 on molecular sieves and activated carbonEnergy & Fuels, 15
F. Rouquerol, J. Rouquerol, K. Sing (1999)
Adsorption by Powders and Porous Solids
G. Versteeg, L. Dijck, W. Swaaij (1996)
ON THE KINETICS BETWEEN CO2 AND ALKANOLAMINES BOTH IN AQUEOUS AND NON-AQUEOUS SOLUTIONS. AN OVERVIEWChemical Engineering Communications, 144
B. Gómez‐Lor, E. Gutiérrez‐Puebla, M. Iglesias, M. Monge, and Ruiz-Valero, N. Snejko (2005)
Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Properties†Chemistry of Materials, 17
B. Arstad, R. Blom, O. Swang (2007)
CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations.The journal of physical chemistry. A, 111 7
S. Kitagawa, R. Kitaura, S. Noro (2004)
Functional porous coordination polymers.Angewandte Chemie, 43 18
S. Satyapal, T. Filburn, A. Trela, J. Strange (2001)
Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support ApplicationsEnergy & Fuels, 15
S. Bourrelly, P.L. Liewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey (2005)
Different behaviours of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47J. Am. Chem. Soc., 127
P. Harlick, A. Sayari (2006)
Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 AdsorptionIndustrial & Engineering Chemistry Research, 45
S. Delaney, G. Knowles, A. Chaffee (2002)
Hybrid mesoporous materials for carbon dioxide separation, 47
K. Barthelet, J. Marrot, G. Férey, D. Riou (2004)
VIII(OH)[O2C-C6H4-CO2].(HO2C-C6H4-CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks?Chemical communications, 5
M. Lewis, R. Glaser (2003)
Synergism of Catalysis and Reaction Center Rehybridization. A Novel Mode of Catalysis in the Hydrolysis of Carbon DioxideJournal of Physical Chemistry A, 107
Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.
Adsorption – Springer Journals
Published: Jul 17, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.