Access the full text.
Sign up today, get DeepDyve free for 14 days.
Kazuhisa Maehara (1986)
The weak 1-positivity of direct image sheaves.Journal für die reine und angewandte Mathematik (Crelles Journal), 1986
A. Białynicki-Birula, J. Carrell, W. Mcgovern (2002)
Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action
Y. Kawamata (2009)
Semipositivity theorem for reducible algebraic fiber spacesarXiv: Algebraic Geometry
On mixed-ω -sheaves
S. Mori (1987)
Classification of higher-dimensional varieties
O Fujino (2024)
On mixed-$\omega$-sheavesAsian J. Math., 28
O. Fujino, T. Fujisawa, M. Saito (2014)
Some Remarks on the Semipositivity TheoremsPublications of The Research Institute for Mathematical Sciences, 50
(1987)
Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) , 269–331
R. Hartshorne (1970)
Ample subvarieties of algebraic varieties
H Hironaka (1964)
Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: IIAnn. Math. (2), 79
K. Yamanoi (2023)
Bloch's principle for holomorphic maps into subvarieties of semi-abelian varieties
K Maehara (1986)
J. Reine Angew. Math., 364
O. Fujino (2014)
On subadditivity of the logarithmic Kodaira dimensionarXiv: Algebraic Geometry
Benoît Cadorel, Ya Deng, K. Yamanoi (2022)
Hyperbolicity and fundamental groups of complex quasi-projective varieties
H. Grauert, R. Remmert (1984)
Coherent Analytic Sheaves
J Kollár (1986)
Higher Direct Images of Dualizing Sheaves IIAnn. Math. (2), 124
J. Kollár (1986)
Higher direct images of dualizing sheaves. IIAnnals of Mathematics, 124
B Conrad (2002)
J. Ramanujan Math. Soc., 17
O. Fujino, T. Fujisawa (2017)
On semipositivity theoremsMathematical Research Letters
S. Lang (1983)
Abelian varieties
Y. Kawamata, E. Viehweg (1980)
On a characterization of an abelian variety in the classification theory of algebraic varietiesCompositio Mathematica, 41
D. Matsushita (2016)
HIGHER DIRECT IMAGES OF DUALIZING SHEAVES OF
Y. Kawamata (2011)
Hodge Theory on Generalized Normal Crossing VarietiesProceedings of the Edinburgh Mathematical Society, 57
S. Iitaka (1976)
Logarithmic forms of algebraic varietiesJournal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 23
P. Griffiths, J. Harris (1994)
Principles of Algebraic Geometry: Griffiths/Principles
O. Fujino (2019)
Corrigendum to “On subadditivity of the logarithmic Kodaira dimension”Journal of the Mathematical Society of Japan
O. Fujino (2002)
Remarks on algebraic fiber spacesJournal of Mathematics of Kyoto University, 45
野口 潤次郎, J. Winkelmann (2013)
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
O. Fujino (2014)
Notes on the weak positivity theoremsarXiv: Algebraic Geometry
(1971)
Revˆetements ´etales et groupe fondamen-tal, S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie 1960–1961 (SGA 1) . Dirig´e par Alexandre Grothendieck. Augment´e de deux expos´es de M. Raynaud
M. Nagata (1962)
Imbedding of an abstract variety in a complete varietyJournal of Mathematics of Kyoto University, 2
O. Fujino, T. Fujisawa (2012)
Variations of Mixed Hodge Structure and Semipositivity TheoremsPublications of The Research Institute for Mathematical Sciences, 50
W. Schmid (1973)
Variation of hodge structure: The singularities of the period mappingInventiones mathematicae, 22
Osamu Fujino, M. Lopes, R. Pardini, Sofia Tirabassi (2024)
Erratum to “A footnote to a theorem of Kawamata”Mathematische Nachrichten
飯高 茂 (1981)
Birational geometry for open varieties
(2020)
Iitaka conjecture—an introduction
P. Griffiths (1970)
Periods of integrals on algebraic manifolds, III (some global differential-geometric properties of the period mapping)Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 38
O. Fujino (2009)
Fundamental Theorems for the Log Minimal Model ProgramPublications of The Research Institute for Mathematical Sciences, 47
(2013)
Basic algebraic geometry. 1. Varieties in projective space , Third edition. Translated from the 2007 third Russian edition
P. Deligne (1974)
Théorie de hodge, IIIPublications Mathématiques de l'Institut des Hautes Études Scientifiques, 44
S. Iitaka (1979)
A numerical criterion of quasi-abelian surfacesNagoya Mathematical Journal, 73
B. Conrad (2004)
A MODERN PROOF OF CHEVALLEY’S THEOREM ON ALGEBRAIC GROUPS
Osamu Fujino (2005)
Cn,n−1 REVISITED
Claudia Scheimbauer (2020)
Algebraic topologyGraduate Studies in Mathematics
P. Deligne (1971)
Théorie de Hodge, IIPublications Mathématiques de l'Institut des Hautes Études Scientifiques, 40
S Iitaka (1976)
J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23
S. Iitaka (1981)
Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties
A. Beauville (1996)
Complex Algebraic Surfaces: References
M. Lopes, R. Pardini, S. Tirabassi (2022)
A footnote to a theorem of KawamataMathematische Nachrichten, 296
M. Beltrametti, A. Sommese (1995)
The Adjunction Theory of Complex Projective Varieties
S. Iitaka (1977)
Complex Analysis and Algebraic Geometry: On Logarithmic Kodaira Dimension of Algebraic Varieties
Jungkai Chen, Christopher Hacon (1999)
Characterization of abelian varietiesInventiones mathematicae, 143
Yukitaka Abe (1989)
On toroidal groupsJournal of The Mathematical Society of Japan, 41
M Nagata (1962)
J. Math. Kyoto Univ., 2
O. Fujino (2015)
SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION FOR MORPHISMS OF RELATIVE DIMENSION ONE REVISITED
Y. Kawamata (2010)
Variation of mixed Hodge structures and the positivity for algebraic fiber spacesarXiv: Algebraic Geometry
H. Hironaka (1964)
Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: IIAnnals of Mathematics, 79
L. Ein, R. Lazarsfeld (1996)
Singularities of theta divisors and the birational geometry of irregular varietiesJournal of the American Mathematical Society, 10
K Ueno (1975)
Classification Theory of Algebraic Varieties and Compact Complex Spaces
上野 健爾, P. Cherenack (1975)
Classification theory of algebraic varieties and compact complex spaces
Y Kawamata (1980)
Compos. Math., 41
N. Nakayama (1986)
Hodge filtrations and the higher direct images of canonical sheavesInventiones mathematicae, 85
藤野 修 (2015)
On the foundations of the minimal model program
O. Fujino (2004)
Higher direct images of log canonical divisorsJournal of Differential Geometry, 66
M. Brion, P. Samuel, V. Uma (2013)
Lectures on the Structure of Algebraic Groups and Geometric Applications
We discuss Iitaka’s theory of quasi-Albanese maps in details. We also give a detailed proof of Kawamata’s theorem on the quasi-Albanese maps for varieties of the logarithmic Kodaira dimension zero. Note that Iitaka’s theory is an application of Deligne’s mixed Hodge theory for smooth algebraic varieties.
Bollettino dell Unione Matematica Italiana – Springer Journals
Published: Dec 2, 2024
Keywords: Quasi-Albanese maps; Quasi-abelian varieties; Logarithmic Kodaira dimension; Mixed Hodge structures; Commutative complex Lie groups; Weak positivity; Primary 14E05; Secondary 14E30; 14L40; 32M05; 14K99
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.