Neurons May Live for Decades with Neurofibrillary Tangles
Neurons May Live for Decades with Neurofibrillary Tangles
Morsch, Renee; Simon, William; Coleman, Paul D.
1999-02-01 00:00:00
Neurons containing neurofibrillary tangles (NFT) are one of the pathological hallmarks of Alzheimer disease (AD). It is known that this population of neurons express gene products and thus function to some degree, but it is unknown how long these neurons may survive with NFT. It is also thought that the formation of NFT results in the death of neurons. Using quantitative data on neuron loss and NFT formation as a function of disease duration, we have generated a computer program that models both the degeneration of CA1 hippocampal neurons and the formation of NFT in these neurons in AD. Modeling various neuron survival times with NFT and altering selected assumptions upon which the models are based, we arrive at the conclusions that 1) CA1 hippocampal neurons survive with NFT for about 20 years, and 2) NFT may not be obligatory for death of CA1 hippocampal neurons in AD.
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pngJournal of Neuropathology & Experimental NeurologyOxford University Presshttp://www.deepdyve.com/lp/oxford-university-press/neurons-may-live-for-decades-with-neurofibrillary-tangles-QsdfxfVb8I
Neurons May Live for Decades with Neurofibrillary Tangles
Neurons containing neurofibrillary tangles (NFT) are one of the pathological hallmarks of Alzheimer disease (AD). It is known that this population of neurons express gene products and thus function to some degree, but it is unknown how long these neurons may survive with NFT. It is also thought that the formation of NFT results in the death of neurons. Using quantitative data on neuron loss and NFT formation as a function of disease duration, we have generated a computer program that models both the degeneration of CA1 hippocampal neurons and the formation of NFT in these neurons in AD. Modeling various neuron survival times with NFT and altering selected assumptions upon which the models are based, we arrive at the conclusions that 1) CA1 hippocampal neurons survive with NFT for about 20 years, and 2) NFT may not be obligatory for death of CA1 hippocampal neurons in AD.
Journal
Journal of Neuropathology & Experimental Neurology
– Oxford University Press
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.