Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco

Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty... Abstract The increased production of trienoic fatty acids, hexadecatrienoic (16:3) and linolenic (18:3) acids, is a response connected with cold acclimation of higher plants and is thought to protect plant cells against cold damage. Transgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased levels of 16:3 and 18:3 fatty acids, and correspondingly decreased levels of their precursors, hexadecadienoic and linoleic acids, were engineered by introduction of a chloroplast [omega]-3 fatty acid desaturase gene (the fad7 gene) isolated from Arabidopsis thaliana. When exposed to 1[deg]C for 7 d and then cultured at 25[deg]C, the suppression of leaf growth observed in the wild-type plants was significantly alleviated in the transgenic plants with the fad7 gene. The low-temperature- induced chlorosis was also much reduced in the plants transformed with the fad7 gene. These results indicate that increased levels of trienoic fatty acids in genetically engineered plants enhance cold tolerance. This content is only available as a PDF. Copyright © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png PLANT PHYSIOLOGY Oxford University Press

Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco

Loading next page...
 
/lp/oxford-university-press/genetic-enhancement-of-cold-tolerance-by-expression-of-a-gene-for-Qlw3a4horG

References (30)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.105.2.601
Publisher site
See Article on Publisher Site

Abstract

Abstract The increased production of trienoic fatty acids, hexadecatrienoic (16:3) and linolenic (18:3) acids, is a response connected with cold acclimation of higher plants and is thought to protect plant cells against cold damage. Transgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased levels of 16:3 and 18:3 fatty acids, and correspondingly decreased levels of their precursors, hexadecadienoic and linoleic acids, were engineered by introduction of a chloroplast [omega]-3 fatty acid desaturase gene (the fad7 gene) isolated from Arabidopsis thaliana. When exposed to 1[deg]C for 7 d and then cultured at 25[deg]C, the suppression of leaf growth observed in the wild-type plants was significantly alleviated in the transgenic plants with the fad7 gene. The low-temperature- induced chlorosis was also much reduced in the plants transformed with the fad7 gene. These results indicate that increased levels of trienoic fatty acids in genetically engineered plants enhance cold tolerance. This content is only available as a PDF. Copyright © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

PLANT PHYSIOLOGYOxford University Press

Published: Jun 1, 1994

There are no references for this article.