Access the full text.
Sign up today, get DeepDyve free for 14 days.
José Cañadillas, H. Tidow, S. Freund, T. Rutherford, H. Ang, A. Fersht (2006)
Solution structure of p53 core domain: Structural basis for its instabilityProceedings of the National Academy of Sciences of the United States of America, 103
K. Sakaguchi, Shinichi Saito, Y. Higashimoto, Siddhartha Roy, C. Anderson, E. Appella (2000)
Damage-mediated Phosphorylation of Human p53 Threonine 18 through a Cascade Mediated by a Casein 1-like KinaseThe Journal of Biological Chemistry, 275
Clifford Toleman, A. Paterson, R. Shin, J. Kudlow (2006)
Streptozotocin inhibits O-GlcNAcase via the production of a transition state analog.Biochemical and biophysical research communications, 340 2
M. Kubbutat, S. Jones, K. Vousden (1997)
Regulation of p53 stability by Mdm2Nature, 387
P. Shaw, J. Freeman, R. Bovey, R. Iggo (1996)
Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus.Oncogene, 12 4
Dawadschargal Bech‐Otschir, M. Seeger, W. Dubiel (2002)
The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis.Journal of cell science, 115 Pt 3
S. Lowe, S. Bodis, A. McClatchey, L. Remington, H. Ruley, D. Fisher, D. Housman, T. Jacks (1994)
p53 status and the efficacy of cancer therapy in vivo.Science, 266 5186
Shengyun Fang, J. Jensen, R. Ludwig, K. Vousden, A. Weissman (2000)
Mdm2 Is a RING Finger-dependent Ubiquitin Protein Ligase for Itself and p53*The Journal of Biological Chemistry, 275
FI Comer, GW Hart (2000)
O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphateJ. Biol. Chem., 275
Yuan Gao, G. Parker, G. Hart (2000)
Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells.Archives of biochemistry and biophysics, 383 2
Y. Barak, T. Juven, R. Haffner, M. Oren (1993)
mdm2 expression is induced by wild type p53 activity.The EMBO Journal, 12
L. Wells, K. Vosseller, R. Cole, J. Cronshaw, M. Matunis, G. Hart (2002)
Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications*Molecular & Cellular Proteomics, 1
C. Prives, P. Hall (1999)
The p53 pathwayThe Journal of Pathology, 187
A. Bode, Z. Dong (2004)
Post-translational modification of p53 in tumorigenesisNature Reviews Cancer, 4
Kan Liu, A. Paterson, Fengxue Zhang, J. Mcandrew, K. Fukuchi, J. Wyss, Ling Peng, Yong Hu, J. Kudlow (2004)
Accumulation of protein O‐GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O‐GlcNAc metabolismJournal of Neurochemistry, 89
R. Haltiwanger, K. Grove, G. Philipsberg (1998)
Modulation of O-LinkedN-Acetylglucosamine Levels on Nuclear and Cytoplasmic Proteins in Vivo Using the PeptideO-GlcNAc-β-N-acetylglucosaminidase InhibitorO-(2-Acetamido-2-deoxy-dglucopyranosylidene)amino-N-phenylcarbamate*The Journal of Biological Chemistry, 273
Shinichi Saito, H. Yamaguchi, Y. Higashimoto, C. Chao, Yang Xu, A. Fornace, E. Appella, C. Anderson (2003)
Phosphorylation Site Interdependence of Human p53 Post-translational Modifications in Response to Stress*Journal of Biological Chemistry, 278
G. Clore, J. Ernst, R. Clubb, J. Omichinski, W. Kennedy, K. Sakaguchi, E. Appella, A. Gronenborn (1995)
Refined solution structure of the oligomerization domain of the tumour suppressor p53Nature Structural Biology, 2
F. Comer, G. Hart (2000)
O-Glycosylation of Nuclear and Cytosolic ProteinsThe Journal of Biological Chemistry, 275
Dawadschargal Bech‐Otschir, R. Kraft, Xiaohua Huang, P. Henklein, Barbara Kapelari, C. Pollmann, W. Dubiel (2001)
COP9 signalosome‐specific phosphorylation targets p53 to degradation by the ubiquitin systemThe EMBO Journal, 20
Y. Haupt, R. Maya, A. Kazaz, M. Oren (1997)
Mdm2 promotes the rapid degradation of p53Nature, 387
Xiaogang Cheng, G. Hart (2001)
Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity.The Journal of biological chemistry, 276 13
M. Hollstein, K. Rice, M. Greenblatt, T. Soussi, R. Fuchs, T. Sørlie, E. Hovig, B. Smith-Sørensen, R. Montesano, C. Harris (1994)
Database of p53 gene somatic mutations in human tumors and cell lines.Nucleic acids research, 22 17
S. Morgan, R. Kim, P. Wang, U. Bhat, H. Kusumoto, T. Lu, W. Beck (2000)
Differences in mutant p53 protein stability and functional activity in teniposide-sensitive and -resistant human leukemic CEM cellsOncogene, 19
T. Buschmann, S. Fuchs, Chee-gun Lee, Z. Pan, Z. Ronai (2000)
SUMO-1 Modification of Mdm2 Prevents Its Self-Ubiquitination and Increases Mdm2 Ability to Ubiquitinate p53Cell, 101
J. Hanover (2001)
Glycan‐dependent signaling: O‐linked N‐acetylglucosamineThe FASEB Journal, 15
K. Kearse, G. Hart (1991)
Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins.Proceedings of the National Academy of Sciences of the United States of America, 88 5
N. Chehab, A. Malikzay, M. Appel, T. Halazonetis (2000)
Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53.Genes & development, 14 3
Fengxue Zhang, K. Su, Xiaoyong Yang, Damon Bowe, A. Paterson, J. Kudlow (2003)
O-GlcNAc Modification Is an Endogenous Inhibitor of the ProteasomeCell, 115
C. Hsu, S.-a. Yang, J-Y Wang, H‐S. Yu, S-R Lin (1999)
Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of TaiwanBritish Journal of Cancer, 80
F. Fiordaliso, A. Leri, D. Cesselli, F. Limana, B. Safai, B. Nadal-Ginard, P. Anversa, J. Kajstura (2001)
Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death.Diabetes, 50 10
A. Hirao, Y. Kong, S. Matsuoka, A. Wakeham, J. Ruland, Hiroki Yoshida, Dou Liu, S. Elledge, T. Mak (2000)
DNA damage-induced activation of p53 by the checkpoint kinase Chk2.Science, 287 5459
H. Kang, J. Ju, J. Cho, E. Hwang (2003)
Down-regulation of Sp1 Activity through Modulation of O-Glycosylation by Treatment with a Low Glucose Mimetic, 2-Deoxyglucose*Journal of Biological Chemistry, 278
J. Bargonetti, J. Manfredi (2002)
Multiple roles of the tumor suppressor p53Current Opinion in Oncology, 14
O. Schon, A. Friedler, M. Bycroft, S. Freund, A. Fersht (2002)
Molecular mechanism of the interaction between MDM2 and p53.Journal of molecular biology, 323 3
Manuel Rodríguez, J. Desterro, S. Laín, C. Midgley, D. Lane, R. Hay (1999)
SUMO‐1 modification activates the transcriptional response of p53The EMBO Journal, 18
R. Chalkley, Alma Burlingame (2003)
Identification of Novel Sites of O-N-Acetylglucosamine Modification of Serum Response Factor Using Quadrupole Time-of-flight Mass Spectrometry*Molecular & Cellular Proteomics, 2
K Sakaguchi (2000)
Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 bindingJ. Biol. Chem., 275
R. Konrad, I. Mikolaenko, J. Tolar, Kan Liu, J. Kudlow (2001)
The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase.The Biochemical journal, 356 Pt 1
T. Kawaguchi, S. Kato, Kazunori Otsuka, G. Watanabe, T. Kumabe, T. Tominaga, T. Yoshimoto, C. Ishioka (2005)
The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation libraryOncogene, 24
Karen Vousden (2000)
Minireviewp 53 : Death Star able to induce the defensive p 53 response to oncogene
Wenge Wang, R. Takimoto, F. Rastinejad, W. El-Deiry (2003)
Stabilization of p53 by CP-31398 Inhibits Ubiquitination without Altering Phosphorylation at Serine 15 or 20 or MDM2 BindingMolecular and Cellular Biology, 23
A. Ito, Chun‐Hsiang Lai, Xuan Zhao, Shinichi Saito, Maria Hamilton, E. Appella, T. Yao (2001)
p300/CBP‐mediated p53 acetylation is commonly induced by p53‐activating agents and inhibited by MDM2The EMBO Journal, 20
L. Wells, K. Vosseller, G. Hart (2001)
Glycosylation of Nucleocytoplasmic Proteins: Signal Transduction and O-GlcNAcScience, 291
L. Licitra, S. Suardi, P. Bossi, L. Locati, L. Mariani, P. Quattrone, S. Vullo, M. Oggionni, P. Olmi, G. Cantù, M. Pierotti, S. Pilotti (2004)
Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 22 24
S. Shieh, Y. Taya, C. Prives (1999)
DNA damage‐inducible phosphorylation of p53 at N‐terminal sites including a novel site, Ser20, requires tetramerizationThe EMBO Journal, 18
M. Gostissa, Arnd Hengstermann, V. Fogal, P. Sandy, Sylvia Schwarz, M. Scheffner, G. Sal (1999)
Activation of p53 by conjugation to the ubiquitin‐like protein SUMO‐1The EMBO Journal, 18
Manuel Rodríguez, J. Desterro, S. Laín, D. Lane, R. Hay (2000)
Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated DegradationMolecular and Cellular Biology, 20
J. Ryu, H. Lee, Kyeong-Ae Kim, Jae Lee, K. Lee, Jinseu Park, Soo‐Young Choi (2004)
Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat.Molecules and cells, 17 2
S. Shieh, Jinwoo Ahn, K. Tamai, Y. Taya, C. Prives (2000)
The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.Genes & development, 14 3
Xiaogang Cheng, Robert Cole, Joseph Zaia, G. Hart (2000)
Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta.Biochemistry, 39 38
KH Vousden (2000)
p53: death starCell, 103
Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to p53 is known to occur, but the site of O-GlcNAcylation and its effects on p53 are not understood. Here, we show that Ser 149 of p53 is O-GlcNAcylated and that this modification is associated with decreased phosphorylation of p53 at Thr 155, which is a site that is targeted by the COP9 signalosome, resulting in decreased p53 ubiquitination. Accordingly, O-GlcNAcylation at Ser 149 stabilizes p53 by blocking ubiquitin-dependent proteolysis. Our results indicate that the dynamic interplay between O-GlcNAc and O-phosphate modifications coordinately regulate p53 stability and activity.
Nature Cell Biology – Springer Journals
Published: Sep 10, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.