Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Critical Points and Supersymmetric Vacua I

Critical Points and Supersymmetric Vacua I Supersymmetric vacua (‘universes’) of string/M theory may be identified with certain critical points of a holomorphic section (the ‘superpotential’) of a Hermitian holomorphic line bundle over a complex manifold. An important physical problem is to determine how many vacua there are and how they are distributed, as the superpotential varies over physically relevant ensembles. In several papers over the last few years, M. R. Douglas and co-workers have studied such vacuum statistics problems for a variety of physical models at the physics level of rigor [Do,AD,DD]. The present paper is the first of a series by the present authors giving a rigorous mathematical foundation for the vacuum statistics problem. It sets down basic results on the statistics of critical points ∇s=0 of random holomorphic sections of Hermitian holomorphic line bundles with respect to a metric connection ∇, when the sections are endowed with a Gaussian measure. The principal results give formulas for the expected density and number of critical points of fixed Morse index of Gaussian random sections relative to ∇. They are particularly concrete for Riemann surfaces. In our subsequent work, the results will be applied to the vacuum statistics problem and to the purely geometric problem of studying metrics which minimize the expected number of critical points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Communications in Mathematical Physics Springer Journals

Loading next page...
 
/lp/springer-journals/critical-points-and-supersymmetric-vacua-i-QNx37OLcDG

References (56)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag Berlin Heidelberg
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematical Physics; Quantum Physics; Complex Systems; Classical and Quantum Gravitation, Relativity Theory
ISSN
0010-3616
eISSN
1432-0916
DOI
10.1007/s00220-004-1228-y
Publisher site
See Article on Publisher Site

Abstract

Supersymmetric vacua (‘universes’) of string/M theory may be identified with certain critical points of a holomorphic section (the ‘superpotential’) of a Hermitian holomorphic line bundle over a complex manifold. An important physical problem is to determine how many vacua there are and how they are distributed, as the superpotential varies over physically relevant ensembles. In several papers over the last few years, M. R. Douglas and co-workers have studied such vacuum statistics problems for a variety of physical models at the physics level of rigor [Do,AD,DD]. The present paper is the first of a series by the present authors giving a rigorous mathematical foundation for the vacuum statistics problem. It sets down basic results on the statistics of critical points ∇s=0 of random holomorphic sections of Hermitian holomorphic line bundles with respect to a metric connection ∇, when the sections are endowed with a Gaussian measure. The principal results give formulas for the expected density and number of critical points of fixed Morse index of Gaussian random sections relative to ∇. They are particularly concrete for Riemann surfaces. In our subsequent work, the results will be applied to the vacuum statistics problem and to the purely geometric problem of studying metrics which minimize the expected number of critical points.

Journal

Communications in Mathematical PhysicsSpringer Journals

Published: Oct 26, 2004

There are no references for this article.