Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Identification of the First Gene (FRG1) from the FSHD Region on Human Chromosome 4q35

Identification of the First Gene (FRG1) from the FSHD Region on Human Chromosome 4q35 Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant, neuromuscular disorder characterized by progressive weakness of muscles in the face, shoulder and upper arm. Deletion of integral copies of a 3.3 kb repeated unit from the subtelomeric region on chromosome 4q35 has been shown to be associated with FSHD. These repeated units which are apparently not transcribed, map very close to the 4q telomere and belong to a 3.3 kb repeat family dispersed over heterochromatic regions of the genome. Hence, position effect variegation (PEV), inducing allele-specific transcriptional repression of a gene located more centromeric, has been postulated as the underlying genetic mechanism of FSHD. This hypothesis has directed the search for the FSHD gene to the region centromeric to the repeated units. A CpG island was identified and found to be associated with the 5′ untranslated region of a novel human gene, FRG1 (FSHD Region Gene 1). This evolutionary conserved gene is located about 100 kb proximal to the repeated units and belongs to a multigene family with FRG1 related sequences on multiple chromosomes. The mature chromosome 4 FRG1 transcript is 1042 bp in length and contains nine exons which encode a putative protein of 258 amino acid residues. Transcription of FRG1 was detected in several human tissues including placenta, lymphocytes, brain and muscle. To investigate a possible PEV mechanism, allele-specific FRG1 steady-state transcript levels were determined using RNA-based single-strand conformation polymorphism (SSCP) analysis. A polymorphic fragment contained within the first exon of FRG1 was amplified from reverse transcribed RNA from lymphocytes and muscle biopsies of patients and controls. No evidence for PEV mediated repression of allelic transcription was obtained in these tissues. However, detection of PEV in FSHD patients may require analysis of more specific cell types at particular developmental stages. © 1996 Oxford University Press « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (1996) 5 (5): 581-590. doi: 10.1093/hmg/5.5.581 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Article Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by van Deutekom, J. C. T. Articles by Frants, R. R. Search for related content PubMed PubMed citation Articles by van Deutekom, J. C. T. Articles by Lemmers, R. J. L. F. Articles by Grewal, P. K. Articles by van Geel, M. Articles by Romberg, S. Articles by Dauwerse, H. G. Articles by Wright, T. J. Articles by Padberg, G. W. Articles by Hofker, M. H. Articles by Hewitt, J. E. Articles by Frants, R. R. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Molecular Genetics Oxford University Press

Loading next page...
 
/lp/oxford-university-press/identification-of-the-first-gene-frg1-from-the-fshd-region-on-human-PywB0xm2i3

References (51)

Publisher
Oxford University Press
Copyright
Copyright © 2015 Oxford University Press
ISSN
0964-6906
eISSN
1460-2083
DOI
10.1093/hmg/5.5.581
Publisher site
See Article on Publisher Site

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant, neuromuscular disorder characterized by progressive weakness of muscles in the face, shoulder and upper arm. Deletion of integral copies of a 3.3 kb repeated unit from the subtelomeric region on chromosome 4q35 has been shown to be associated with FSHD. These repeated units which are apparently not transcribed, map very close to the 4q telomere and belong to a 3.3 kb repeat family dispersed over heterochromatic regions of the genome. Hence, position effect variegation (PEV), inducing allele-specific transcriptional repression of a gene located more centromeric, has been postulated as the underlying genetic mechanism of FSHD. This hypothesis has directed the search for the FSHD gene to the region centromeric to the repeated units. A CpG island was identified and found to be associated with the 5′ untranslated region of a novel human gene, FRG1 (FSHD Region Gene 1). This evolutionary conserved gene is located about 100 kb proximal to the repeated units and belongs to a multigene family with FRG1 related sequences on multiple chromosomes. The mature chromosome 4 FRG1 transcript is 1042 bp in length and contains nine exons which encode a putative protein of 258 amino acid residues. Transcription of FRG1 was detected in several human tissues including placenta, lymphocytes, brain and muscle. To investigate a possible PEV mechanism, allele-specific FRG1 steady-state transcript levels were determined using RNA-based single-strand conformation polymorphism (SSCP) analysis. A polymorphic fragment contained within the first exon of FRG1 was amplified from reverse transcribed RNA from lymphocytes and muscle biopsies of patients and controls. No evidence for PEV mediated repression of allelic transcription was obtained in these tissues. However, detection of PEV in FSHD patients may require analysis of more specific cell types at particular developmental stages. © 1996 Oxford University Press « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (1996) 5 (5): 581-590. doi: 10.1093/hmg/5.5.581 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Article Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by van Deutekom, J. C. T. Articles by Frants, R. R. Search for related content PubMed PubMed citation Articles by van Deutekom, J. C. T. Articles by Lemmers, R. J. L. F. Articles by Grewal, P. K. Articles by van Geel, M. Articles by Romberg, S. Articles by Dauwerse, H. G. Articles by Wright, T. J. Articles by Padberg, G. W. Articles by Hofker, M. H. Articles by Hewitt, J. E. Articles by Frants, R. R. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

Human Molecular GeneticsOxford University Press

Published: May 1, 1996

There are no references for this article.