Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Pereira, Betty Chang, Jiajing Qiu, Xiaohong Niu, Dmitri Papatsenko, Caroline Hendry, N. Clark, A. Nomura-Kitabayashi, J. Kovacic, Avi Ma’ayan, C. Schaniel, I. Lemischka, K. Moore (2013)
Induction of a hemogenic program in mouse fibroblasts.Cell stem cell, 13 2
M. Ieda, Ji-Dong Fu, P. Delgado-Olguín, V. Vedantham, Y. Hayashi, B. Bruneau, D. Srivastava (2010)
Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined FactorsCell, 142
Anna Falk, P. Koch, Jaideep Kesavan, Yasuhiro Takashima, J. Ladewig, Michael Alexander, Ole Wiskow, J. Tailor, M. Trotter, S. Pollard, Austin Smith, O. Brüstle (2012)
Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human NeuronsPLoS ONE, 7
R. Hevner, Limin Shi, Nick Justice, Y. Hsueh, M. Sheng, S. Smiga, A. Bulfone, A. Goffinet, A. Campagnoni, J. Rubenstein (2001)
Tbr1 Regulates Differentiation of the Preplate and Layer 6Neuron, 29
J. Ladewig, J. Mertens, Jaideep Kesavan, Jonas Doerr, Daniel Poppe, F. Glaue, S. Herms, P. Wernet, G. Kögler, F. Müller, P. Koch, O. Brüstle (2012)
Small molecules enable highly efficient neuronal conversion of human fibroblastsNature Methods, 9
Andrew Adler, Christopher Grigsby, K. Kulangara, Hong Wang, R. Yasuda, K. Leong (2012)
Nonviral Direct Conversion of Primary Mouse Embryonic Fibroblasts to Neuronal CellsMolecular Therapy. Nucleic Acids, 1
Kazutoshi Takahashi, K. Tanabe, M. Ohnuki, Megumi Narita, T. Ichisaka, K. Tomoda, S. Yamanaka (2007)
Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined FactorsCell, 131
Thomas Vierbuchen, Austin Ostermeier, Z. Pang, Yuko Kokubu, T. Südhof, Marius Wernig (2010)
Direct conversion of fibroblasts to functional neurons by defined factorsNature, 463
J. O'Malley, K. Woltjen, K. Kaji (2009)
New strategies to generate induced pluripotent stem cells.Current opinion in biotechnology, 20 5
Esther Son, J. Ichida, B. Wainger, Jeremy Toma, V. Rafuse, C. Woolf, K. Eggan (2011)
Conversion of mouse and human fibroblasts into functional spinal motor neurons.Cell stem cell, 9 3
K. Kanning, Artem Kaplan, C. Henderson (2010)
Motor neuron diversity in development and disease.Annual review of neuroscience, 33
Kazutoshi Takahashi, S. Yamanaka (2006)
Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined FactorsCell, 126
Janghwan Kim, J. Efe, Saiyong Zhu, M. Talantova, Xu Yuan, Shufen Wang, S. Lipton, Kang Zhang, Sheng Ding (2011)
Direct reprogramming of mouse fibroblasts to neural progenitorsProceedings of the National Academy of Sciences, 108
Bo Feng, Jia-Hui Ng, Jian-Chien Heng, H. Ng (2009)
Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells.Cell stem cell, 4 4
D. Han, Natalia Tapia, A. Hermann, K. Hemmer, S. Höing, M. Araúzo-Bravo, H. Zaehres, Guangming Wu, Stefan Frank, S. Moritz, B. Greber, Ji Yang, H. Lee, J. Schwamborn, A. Storch, H. Schöler (2012)
Direct reprogramming of fibroblasts into neural stem cells by defined factors.Cell stem cell, 10 4
T. Jessell (2000)
Neuronal specification in the spinal cord: inductive signals and transcriptional codesNature Reviews Genetics, 1
B. Molyneaux, P. Arlotta, J. Menezes, J. Macklis (2007)
Neuronal subtype specification in the cerebral cortexNature Reviews Neuroscience, 8
R. Ambasudhan, M. Talantova, Ronald Coleman, Xu Yuan, Saiyong Zhu, S. Lipton, Sheng Ding (2011)
Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions.Cell stem cell, 9 2
Ernesto Lujan, Soham Chanda, H. Ahlenius, T. Südhof, Marius Wernig (2012)
Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cellsProceedings of the National Academy of Sciences, 109
S. Kang, Y. Roh, A. Lau, D. Westaway, Debbie McKenzie, J. Aiken, Yong-Sun Kim, H. Yoo (2011)
Establishment and characterization of Prnp knockdown neuroblastoma cells using dual microRNA-mediated RNA interferencePrion, 5
I. Nunes, Lucy Tovmasian, Robert Silva, R. Burke, S. Goff (2003)
Pitx3 is required for development of substantia nigra dopaminergic neuronsProceedings of the National Academy of Sciences of the United States of America, 100
A. Buffo, M. Vosko, Dilek Ertürk, G. Hamann, M. Jucker, D. Rowitch, M. Götz (2005)
Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair.Proceedings of the National Academy of Sciences of the United States of America, 102 50
U. Pfisterer, A. Kirkeby, Olof Torper, J. Wood, Jenny Nelander, A. Dufour, A. Björklund, O. Lindvall, Johan Jakobsson, M. Parmar (2011)
Direct conversion of human fibroblasts to dopaminergic neuronsProceedings of the National Academy of Sciences, 108
AF Adler, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW (2012)
Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cellsNat Methods, 1
M. Erecínska, I. Silver (2001)
Tissue oxygen tension and brain sensitivity to hypoxia.Respiration physiology, 128 3
B. Berninger, M. Costa, U. Koch, T. Schroeder, B. Sutor, B. Grothe, M. Götz (2007)
Functional Properties of Neurons Derived from In Vitro Reprogrammed Postnatal AstrogliaThe Journal of Neuroscience, 27
S. Yamanaka, H. Blau (2010)
Nuclear reprogramming to a pluripotent state by three approachesNature, 465
Soham Chanda, Samuele Marro, Marius Wernig, T. Südhof (2013)
Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutationProceedings of the National Academy of Sciences, 110
Z. Su, Wenze Niu, Meng-Lu Liu, Yuhua Zou, Chun-li Zhang (2014)
In vivo conversion of astrocytes to neurons in the injured adult spinal cordNature communications, 5
Fadi Najm, Angela Lager, A. Zaremba, Krysta Wyatt, A. Caprariello, Daniel Factor, Robert Karl, T. Maeda, Robert Miller, P. Tesar (2013)
Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cellsNature biotechnology, 31
J. Fearnley, A. Lees (1991)
Ageing and Parkinson's disease: substantia nigra regional selectivity.Brain : a journal of neurology, 114 ( Pt 5)
Ziyuan Guo, Lei Zhang, Zheng Wu, Yuchen Chen, Fan Wang, Gong Chen (2014)
In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model.Cell stem cell, 14 2
C. Heinrich, R. Blum, S. Gascón, G. Masserdotti, P. Tripathi, R. Sánchez, S. Tiedt, T. Schroeder, M. Götz, B. Berninger (2010)
Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional NeuronsPLoS Biology, 8
Yuanchao Xue, K. Ouyang, Jie Huang, Yu Zhou, H. Ouyang, Hai-Ri Li, Gang Wang, Qi-Jia Wu, Chao-liang Wei, Y. Bi, Li Jiang, Zhiqiang Cai, Hui-Qing Sun, Kang Zhang, Yi Zhang, Ju Chen, Xiang-Dong Fu (2013)
Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA CircuitsCell, 152
Karen Ring, Leslie Tong, M. Balestra, Robyn Javier, Y. Andrews-Zwilling, Gang Li, David Walker, William Zhang, Anatol Kreitzer, Yadong Huang (2012)
Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor.Cell stem cell, 11 1
L. Fischer, D. Culver, P. Tennant, A. Davis, Minsheng Wang, A. Castellano-Sanchez, J. Khan, M. Polak, J. Glass (2004)
Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and manExperimental Neurology, 185
R. Jaenisch, R. Young (2008)
Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear ReprogrammingCell, 132
Ariel Levine, A. Brivanlou (2007)
Proposal of a model of mammalian neural induction.Developmental biology, 308 2
Pengyu Huang, Zhiying He, Shuyi Ji, Hua Sun, D. Xiang, Changcheng Liu, Yi-Ping Hu, Xin Wang, Lijian Hui (2011)
Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factorsNature, 475
Wenze Niu, Tong Zang, Yuhua Zou, Sanhua Fang, Derek Smith, R. Bachoo, Chun-li Zhang (2013)
In vivo reprogramming of astrocytes to neuroblasts in the adult brainNature Cell Biology, 15
関谷 明香 (2012)
Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors
M. Thier, P. Wörsdörfer, Y. Lakes, Raphaela Gorris, S. Herms, T. Opitz, Dominic Seiferling, Tamara Quandel, P. Hoffmann, M. Nöthen, O. Brüstle, F. Edenhofer (2012)
Direct conversion of fibroblasts into stably expandable neural stem cells.Cell stem cell, 10 4
F. Meng, Siye Chen, Qing-long Miao, Kechun Zhou, Qicheng Lao, Xiaohui Zhang, Wen-yi Guo, Jianwei Jiao (2011)
Induction of fibroblasts to neurons through adenoviral gene deliveryCell Research, 22
Nan Yang, Y. Ng, Z. Pang, T. Südhof, Marius Wernig (2011)
Induced neuronal cells: how to make and define a neuron.Cell stem cell, 9 6
Olof Torper, U. Pfisterer, D. Wolf, Maria Pereira, Shong Lau, Johan Jakobsson, A. Björklund, Shane Grealish, M. Parmar (2013)
Generation of induced neurons via direct conversion in vivoProceedings of the National Academy of Sciences, 110
R. Blum, C. Heinrich, R. Sánchez, A. Lepier, E. Gundelfinger, B. Berninger, M. Götz (2011)
Neuronal network formation from reprogrammed early postnatal rat cortical glial cells.Cerebral cortex, 21 2
A. Yoo, A. Sun, Li Li, A. Shcheglovitov, T. Portmann, Yulong Li, Chris Lee-Messer, R. Dolmetsch, R. Tsien, G. Crabtree (2011)
MicroRNA-mediated conversion of human fibroblasts to neuronsNature, 476
A. Björklund, S. Dunnett (2007)
Dopamine neuron systems in the brain: an updateTrends in Neurosciences, 30
F. Meng, Xuanchun Wang, P. Gu, Zishan Wang, Wen-yi Guo (2013)
Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene deliveryNeuroscience, 250
Samuele Marro, Z. Pang, Nan Yang, Miao-Chih Tsai, K. Qu, Howard Chang, T. Südhof, Marius Wernig (2011)
Direct lineage conversion of terminally differentiated hepatocytes to functional neurons.Cell stem cell, 9 4
Thomas Vierbuchen, Marius Wernig (2011)
Direct Lineage Conversions: Unnatural but useful?Nature biotechnology, 29
Jongpil Kim, Susan Su, Haoyi Wang, A. Cheng, John Cassady, Michael Lodato, C. Lengner, C. Chung, Meelad Dawlaty, L. Tsai, R. Jaenisch (2011)
Functional integration of dopaminergic neurons directly converted from mouse fibroblasts.Cell stem cell, 9 5
Nan Yang, J. Zuchero, H. Ahlenius, Samuele Marro, Y. Ng, Thomas Vierbuchen, J. Hawkins, R. Geissler, B. Barres, Marius Wernig (2013)
Generation of oligodendroglial cells by direct lineage conversionNature biotechnology, 31
N. Heins, P. Malatesta, F. Cecconi, M. Nakafuku, K. Tucker, M. Hack, P. Chapouton, Y. Barde, M. Götz (2002)
Glial cells generate neurons: the role of the transcription factor Pax6Nature Neuroscience, 5
Jacqueline Lee (1997)
Basic helix-loop-helix genes in neural developmentCurrent Opinion in Neurobiology, 7
J. Visvanathan, Seunghee Lee, Bora Lee, Jae Lee, Soo-Kyung Lee (2007)
The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development.Genes & development, 21 7
Orly Wapinski, Thomas Vierbuchen, K. Qu, Qian Lee, Soham Chanda, Daniel Fuentes, P. Giresi, Y. Ng, Samuele Marro, N. Neff, D. Drechsel, B. Martynoga, D. Castro, A. Webb, T. Südhof, A. Brunet, F. Guillemot, Howard Chang, Marius Wernig (2013)
Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to NeuronsCell, 155
J. Davila, Soham Chanda, C. Ang, T. Südhof, Marius Wernig (2013)
Acute reduction in oxygen tension enhances the induction of neurons from human fibroblastsJournal of Neuroscience Methods, 216
H. Okano, S. Temple (2009)
Cell types to order: temporal specification of CNS stem cellsCurrent Opinion in Neurobiology, 19
E. Metzakopian, W. Lin, A. Ferri, C. Yan, M. Lévesque, K. Kaestner, S. Ang (2006)
Transcriptional control of midbrain dopaminergic neuron developmentInternational Journal of Developmental Neuroscience, 28
Z. Pang, Nan Yang, Thomas Vierbuchen, Austin Ostermeier, Daniel Fuentes, Troy Yang, A. Citri, V. Sebastiano, Samuele Marro, T. Südhof, Marius Wernig (2011)
Induction of human neuronal cells by defined transcription factorsNature, 476
C. Troy, K. Brown, L. Greene, M. Shelanski (1990)
Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryoNeuroscience, 36
Soham Chanda, C. Ang, J. Davila, ChangHui Pak, M. Mall, Qian Lee, H. Ahlenius, Seung Jung, T. Südhof, Marius Wernig (2014)
Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1Stem Cell Reports, 3
A. Grande, K. Sumiyoshi, A. López-Juárez, J. Howard, B. Sakthivel, B. Aronow, K. Campbell, M. Nakafuku (2013)
Environmental Impact on Direct Neuronal Reprogramming In Vivo in the Adult BrainNature communications, 4
Massimiliano Caiazzo, Maria Dell'Anno, E. Dvoretskova, D. Lazarević, S. Taverna, D. Leo, T. Sotnikova, A. Menegon, P. Roncaglia, G. Colciago, Giovanni Russo, Piero Carninci, G. Pezzoli, R. Gainetdinov, S. Gustincich, Alexander Dityatev, V. Broccoli (2011)
Direct generation of functional dopaminergic neurons from mouse and human fibroblastsNature, 476
Pitx 3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons
Y. Yoshida, Kazutoshi Takahashi, K. Okita, T. Ichisaka, S. Yamanaka (2009)
Hypoxia enhances the generation of induced pluripotent stem cells.Cell stem cell, 5 3
M. Smidt, S. Smits, H. Bouwmeester, F. Hamers, Annemarie Linden, A. Hellemons, J. Graw, J. Burbach (2004)
Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3, 131
Cellular differentiation processes during normal embryonic development are guided by extracellular soluble factors such as morphogen gradients and cell contact signals, eventually resulting in induction of specific combinations of lineage‐determining transcription factors. The young field of epigenetic reprogramming takes advantage of this knowledge and uses cell fate determination factors to convert one lineage into another such as the conversion of fibroblasts into pluripotent stem cells or neurons. These induced cell fate conversions open up new avenues for studying disease processes, generating cell material for therapeutic intervention such as drug screening and potentially also for cell‐based therapies. However, there are still limitations that have to be overcome to fulfill these promises, centering on reprogramming efficiencies, cell identity, and maturation. In this review, we discuss the discovery of induced neuronal reprogramming, ways to improve the conversion process, and finally how to define properly the identity of those converted neuronal cells. J. Comp. Neurol. 522:2877–2886, 2014. © 2014 Wiley Periodicals, Inc.
The Journal of Comparative Neurology – Wiley
Published: Mar 15, 2015
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.