Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Braak (1976)
A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brainBrain Research, 109
L. Sternberger, N. Sternberger (1983)
Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ.Proceedings of the National Academy of Sciences of the United States of America, 80 19
A. Résibois, J. Rogers (1992)
Calretinin in rat brain: An immunohistochemical studyNeuroscience, 46
B. Vogt, S. Derbyshire, A. Jones (1996)
Pain Processing in Four Regions of Human Cingulate Cortex Localized with Co‐registered PET and MR ImagingEuropean Journal of Neuroscience, 8
F. Condé, J. Lund, D. Jacobowitz, K. Baimbridge, D. Lewis (1994)
Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphologyJournal of Comparative Neurology, 341
B. Vogt, R. Sikes, H. Swadlow, T. Weyand (1986)
Rabbit cingulate cortex: Cytoarchitecture, physiological border with visual cortex, and afferent cortical connections of visual, motor, postsubicular, and intracingulate originJournal of Comparative Neurology, 248
B. Vogt (1993)
Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors
E. Foltz, L. White (1962)
Pain "relief" by frontal cingulumotomy.Journal of neurosurgery, 19
S. Carmichael, J. Price (1994)
Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkeyJournal of Comparative Neurology, 346
K. Kunishio, S. Haber (1994)
Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal inputJournal of Comparative Neurology, 350
E. Rausell, CS Bae, A. Viñuela, G. Huntley, E. Jones (1992)
Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations, 12
Jen-Chuen Hsieh, Ö. Hägermark, Mona Ståhle-Bäckdahl, K. Ericson, L. Eriksson, Sharon Stone-Elander, Martin Ingvar (1994)
Urge to scratch represented in the human cerebral cortex during itch.Journal of neurophysiology, 72 6
Javier DeFelipe, Edward Jones (1991)
Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminationsBrain Research, 562
Paul Gabbott, S. Bacon (1996)
Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributionsJournal of Comparative Neurology, 364
R. Dum, P. Strick (1992)
Medial wall motor areas and skeletomotor controlCurrent Opinion in Neurobiology, 2
Beat Schwaller, P. Buchwald, Ingmar Blümcke, Marco Celio, Willi Hunziker (1993)
Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin.Cell calcium, 14 9
S. T. Grafton, R. P. Woods, J. C. Mazziotta (1993)
Within‐arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow, 95
O. Devinsky, M. Morrell, B. Vogt (1995)
Contributions of anterior cingulate cortex to behaviour.Brain : a journal of neurology, 118 ( Pt 1)
Paul Gabbott, S. Bacon (1996)
Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometricsJournal of Comparative Neurology, 364
E. Nimchinsky, P. Hof, W. Young, J. Morrison (1996)
Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkeyJournal of Comparative Neurology, 374
C. Bench, C. Frith, P. Grasby, Karl Friston, R. Dolan (1993)
Investigations of the functional anatomy of attention using the stroop testNeuropsychologia, 31
(1996)
NeuroZoom—Topographical mapping and stereological counting , distribution of data, and collaborative computing
B. A. Vogt, L. J. Vogt, E. A. Nimchinsky, P. R. Hof (1997)
Handbook of Chemical Neuroanatomy, 13
G. Schierle, J. Gander, C. D’orlando, M. Ceilo, D. Weisenhorn (1997)
Calretinin-immunoreactivity during postnatal development of the rat isocortex: a qualitative and quantitative study.Cerebral cortex, 7 2
SQ He, RP Dum, P. Strick (1993)
Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere, 13
Tsutomu Hashikawa, Estrella Rausell, Marco Molinari, Edward Jones (1991)
Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projectionsBrain Research, 544
I. Blümcke, P. Hof, J. Morrison, M. Celio (1990)
Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humansJournal of Comparative Neurology, 301
(1990)
Calbindin D28 k and parvalbumin in the rat nervous system
I. Ferrer, T. Tun˜ón, E. Soriano, A. Río, I. Iraizoz, M. Fonseca, N. Guionnet (1992)
Calbindin immunoreactivity in normal human temporal neocortexBrain Research, 572
M. Corbetta, F. Miezin, S. Dobmeyer, G. Shulman, S. Petersen (1991)
Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography, 11
(1984)
Laminar distribution of cortical efferent cells
(1992)
Cingulate input to primary and supplementary motor cortices in the rhesus monkey: Evidence for somatotopy in cingulate areas 24c and 23c
S. Petersen, P. Fox, M. Posner, M. Mintun, M. Raichle (1988)
Positron emission tomographic studies of the cortical anatomy of single-word processingNature, 331
L. Porrino, A. Crane, P. Goldman-Rakic (1981)
Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeysJournal of Comparative Neurology, 198
Wilbur Smith (1945)
THE FUNCTIONAL SIGNIFICANCE OF THE ROSTRAL CINGULAR CORTEX AS REVEALED BY ITS RESPONSES TO ELECTRICAL EXCITATIONJournal of Neurophysiology, 8
S. Rosen, E. Paulesu, C. Frith, R. Frackowiak, G. Davies, Terry Jones, P. Camici (1994)
Central nervous pathways mediating angina pectorisThe Lancet, 344
W. Lang, L. Petit, P. Höllinger, U. Pietrzyk, N. Tzourio, B. Mazoyer, A. Berthoz (1994)
A positron emission tomography study of oculomotor imagery.Neuroreport, 5 8
E. Kicliter, L. Misantone, D. Stelzner (1974)
Neuronal specificity and plasticity in frog visual system: anatomical correlates.Brain research, 82 2
M. Bentivoglio, K. Kultas‐ilinsky, I. Ilinsky (1993)
Limbic Thalamus: Structure, Intrinsic Organization, and Connections
H. Braak (1979a)
Pigment architecture of the human telencephalic cortex IV. Regio retrosplenialis, 204
Laurent Petit, Christophe Orssaud, N. Tzourio, G. Salamon, Bernard Mazoyer, Alain Berthoz (1993)
PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement.Journal of neurophysiology, 69 4
M. Showers, E. Crosby (1958)
Somatic and visceral responses from the cingulate gyrusNeurology, 8
H. Barbas (1986)
Pattern in the laminar origin of corticocortical connectionsJournal of Comparative Neurology, 252
B. Kaada (1951)
Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala.Acta physiologica Scandinavica. Supplementum, 24 83
B. A. Vogt (1993)
Neurobiology of Cingulate Cortex and Limbic Thalamus
I. Blümcke, Patrick Hof, John Morrison, Marco Celio, Marco Celio (1991)
Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy studyBrain Research, 554
G. Hoesen, R. Morecraft, B. Vogt (1993)
Connections of the Monkey Cingulate Cortex
M. Giguére, P. Goldman-Rakic (1988)
Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeysJournal of Comparative Neurology, 277
P. Hof, H. Lüth, J. Rogers, M. Celio (1993)
Calcium-Binding Proteins Define Subpopulations of Interneurons in Cingulate Cortex
E. Rausell, E. Jones (1991)
Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex, 11
H. Braak, E. Braak (1976)
The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain, 172
SQ He, RP Dum, P. Strick (1995)
Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere, 15
V. Larrue, P. Celsis, A. Bés, J. Marc-Vergnes (1994)
The Functional Anatomy of Attention in Humans: Cerebral Blood Flow Changes Induced by Reading, Naming, and the Stroop EffectJournal of Cerebral Blood Flow & Metabolism, 14
J. Talbot, Sean Marrett, Alan Evans, E. Meyer, M. Bushnell, G. Duncan (1991)
Multiple representations of pain in human cerebral cortex.Science, 251 4999
U. Jürgens (1983)
Afferent fibers to the cingular vocalization region in the squirrel monkeyExperimental Neurology, 80
(1992)
The frontal cortex in neurodegenerative disorders: cellular and regional patterns of vulnerability
P. Hof, J. Morrison (1991)
Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's diseaseExperimental Neurology, 111
E. Rausell, E. Jones (1991)
Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map, 11
(1927)
Gyrus limbicus anterior und Regio retrosplenialis ( Cortex holoprotoptychos quinquestratificatus )VergleichendeArchitektonik bei Tier und Menschen
(1993)
Glutamate receptor subunit and neurofilament protein immunoreactivities differentiate subsets of corticocortically projecting neurons in the monkey cingulate cortex
(1990)
Monoclonal antibodies to calbindin D28 k
M. Fonseca, J. Río, Albert Martı́nez, Sonia Gómez, E. Soriano (1995)
Development of cairetinin immunoreactivity in the neocortex of the ratJournal of Comparative Neurology, 361
M. Río, J. DeFelipe (1994)
A study of SMI 32‐stained pyramidal cells, parvalbumin‐immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortexJournal of Comparative Neurology, 342
D. Pandya, E. Yeterian (1985)
Architecture and Connections of Cortical Association Areas
D. Jacobowitz, L. Winsky (1991)
Immunocytochemical localization of calretinin in the forebrain of the ratJournal of Comparative Neurology, 304
B. Vogt, D. Pandya, D. Rosene (1987)
Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferentsJournal of Comparative Neurology, 262
M. P. Deiber, R. E. Passingham, J. G. Colebatch, K. J. Friston, P. D. Nixon, R. S. J. Frackowiak (1991)
Cortical areas and the selection of movement: A study with positron emission tomography, 84
H. Braak (1979b)
Pigment architecture of the human telencephalic cortex V. Regio anterogenualis, 204
D. Lewis, J. Lund (1990)
Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populationsJournal of Comparative Neurology, 293
D. Weisenhorn, E. Prieto, M. Celio (1994)
Localization of calretinin in cells of layer I (Cajal-Retzius cells) of the developing cortex of the rat.Brain research. Developmental brain research, 82 1-2
K. Brodmann (1985)
Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues
(1993)
Calretinin may define thalamocortical connections between the human limbic thalamus and cingulate cortex
J. Pool, J. Ransohoff (1949)
Autonomic effects on stimulating rostral portion of cingulate gyri in man.Journal of neurophysiology, 12 6
M. Molinari, M. Dell'Anna, E. Rausell, M. Leggio, T. Hashikawa, E. Jones (1995)
Auditory thalamocortical pathways defined in monkeys by calcium‐binding protein immunoreactivityJournal of Comparative Neurology, 362
C. Stichel, W. Singer, C. Heizmann, A. Norman (1987)
Immunohistochemical localization of calcium‐binding proteins, parvalbumin and calbindin‐D 28K, in the adult and developing visual cortex of cats: A light and electron microscopic studyJournal of Comparative Neurology, 262
R. Dum, P. Strick (1993)
Cingulate Motor Areas
P. Hof, E. Nimchinsky (1992)
Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey.Cerebral cortex, 2 6
(1987)
Immuno - histochemical localization of calcium - binding proteins , parvalbumin and calbindinD 28 k , in the adult and developing visual cortex of cats : A light and electron microscopic study
P. Hof, E. Mufson, J. Morrison (1995)
Human orbitofrontal cortex: Cytoarchitecture and quantitative immunohistochemical parcellationJournal of Comparative Neurology, 359
J. Pardo, P. Pardo, Kevin Janer, Marcus RAICHLEt (1990)
The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm.Proceedings of the National Academy of Sciences of the United States of America, 87 1
S. Williams, P. Goldman-Rakic, C. Léránth (1992)
The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortexJournal of Comparative Neurology, 320
J. DeFelipe, E. Jones (1992)
High‐Resolution Light and Electron Microscopic Immunocytochemistry of Colocalized GABA and Calbindin D‐28k in Somata and Double Bouquet Cell Axons of Monkey Somatosensory CortexEuropean Journal of Neuroscience, 4
I. Cournil, B. Casasnovas, S. Helluy, B. Beltz (1995)
Dopamine in the lobster Homarus gammarus: II. Dopamine‐immunoreactive neurons and development of the nervous systemJournal of Comparative Neurology, 362
U. Jürgens, D. Ploog (1970)
Cerebral representations of vocalization in the squirrel monkey, 10
(1992)
The synaptology of parvalbuminimmunoreactive neurons in the primate prefrontal cortex
R. Morecraft, G. Hoesen (1992)
Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: Evidence for somatotopy in areas 24c and 23cJournal of Comparative Neurology, 322
R. Arai, D. Jacobowitz, S. Deura (1994)
Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamusBrain Research Bulletin, 33
C. Baleydier, F. Mauguière (1985)
Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeysJournal of Comparative Neurology, 232
RP Dum, P. Strick (1991)
The origin of corticospinal projections from the premotor areas in the frontal lobe, 11
V. Lee, L. Otvos, M. Carden, M. Hollósi, B. Dietzschold, R. Lazzarini (1988)
Identification of the major multiphosphorylation site in mammalian neurofilaments.Proceedings of the National Academy of Sciences of the United States of America, 85 6
P. Hof, E. Nimchinsky, J. Morrison (1995)
Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate corticesJournal of Comparative Neurology, 362
E. Jones, M. Dell'Anna, M. Molinari, E. Rausell, T. Hashikawa (1995)
Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivityJournal of Comparative Neurology, 362
P. Hof, J. Morrison (1995)
Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysisJournal of Comparative Neurology, 352
P. Hof, E. Nimchinsky, M. Celio, C. Bouras, J. Morrison (1993)
Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer's diseaseNeuroscience Letters, 152
O. Eränkö (1951)
Histochemical Evidence of Intense Phosphatase Activity in the Hypothalamic Magnocellular Nuclei of the RatActa Physiologica Scandinavica, 24
J. Pool (1954)
The visceral brain of man.Journal of neurosurgery, 11 1
(1994)
A study of SMI32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells and presumptive thalamocortical axons in the human temporal necortex
I. Diamond, D. Fitzpatrick, D. Schmechel (1993)
Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri).Proceedings of the National Academy of Sciences of the United States of America, 90
C. Baleydier, F. Mauguière (1987)
Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: A double fluorescent tracer study in monkey, 66
T. Preuss, J. Kaas (1996)
Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primatesBrain Research, 712
H. Kondo, T. Hashikawa, Keiji Tanaka, E. Jones (1994)
Neurochemical gradient along the monkey occipito-temporal cortical pathway.Neuroreport, 5 5
F. E. Bloom, W. G. Young, E. A. Nimchinsky, P. R. Hof, J. H. Morrison (1997)
Neuroinformatics—An Overview of the Human Brain Project, Progress in Neuroinformatics Research, 1
J. DeFelipe, S. Hendry, E. Jones (1989)
Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex.Proceedings of the National Academy of Sciences of the United States of America, 86 6
(1927)
Architecture Cellulaire Normale de l'Ecorce Cérébrale
M. Celio, W. Baier, L. Schärer, H. Gregersen, P. Viragh, A. Norman (1990)
Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k.Cell calcium, 11 9
E. Rausell, C. Cusick, E. Taub, E. Jones (1992)
Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type A receptors at thalamic levels.Proceedings of the National Academy of Sciences of the United States of America, 89 7
M. Campbell, J. Morrison (1989)
Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortexJournal of Comparative Neurology, 282
(1997)
Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer ’ s disease
M. Celio, W. Baier, L. Schärer, P. Viragh, C. Gerday (1988)
Monoclonal antibodies directed against the calcium binding protein parvalbumin.Cell calcium, 9 2
B. Vogt (1976)
Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and golgi studyJournal of Comparative Neurology, 169
(1973)
The cingulate gyrus and human behavior . Electroenceph
B. Robinson, M. Mishkin (1968)
Penile erection evoked from forebrain structures in Macaca mulatta.Archives of neurology, 19 2
J. Millichap (1987)
Gustatory Hallucinations in Epileptic SeizuresPediatric Neurology Briefs, 1
S. Dua, P. Maclean (1964)
LOCALIZATION FOR PENILE ERECTION IN MEDIAL FRONTAL LOBE.The American journal of physiology, 207
J. Talairach, J. Bancaud, S. Geier, M. Bordas-Ferrer, A. Bonis, G. Szikla, M. Rusu (1973)
The cingulate gyrus and human behaviour.Electroencephalography and clinical neurophysiology, 34 1
B. Vogt, E. Nimchinsky, L. Vogt, P. Hof (1995)
Human cingulate cortex: Surface features, flat maps, and cytoarchitectureJournal of Comparative Neurology, 359
J. Aggleton, M. Burton, R. Passingham (1980)
Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta)Brain Research, 190
E. Nimchinsky, B. Vogt, J. Morrison, P. Hof (1995)
Spindle neurons of the human anterior cingul. Ate cortexJournal of Comparative Neurology, 355
D. N. Pandya, E. H. Yeterian (1985)
Cerebral Cortex, 4
Kaada Br (1951)
Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala.Acta Physiologica Scandinavica, 24
B. Kaada (1951)
Somato‐motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat and dog, 24
P. Hof, R. Rosenthal, G. Fiskum (1996)
Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampusJournal of Chemical Neuroanatomy, 11
(1997)
Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer's disease The Primate Nervous System Part I
K. D. Hutchins, A. M. Martino, P. L. Strick (1988)
Corticospinal projections from the medial wall of the hemisphere, 71
P. Kalus, D. Senitz (1996)
Parvalbumin in the human anterior cingulate cortex: morphological heterogeneity of inhibitory interneuronsBrain Research, 729
S. Arroyo, R. Lesser, B. Gordon, S. Uematsu, John Hart, P. Schwerdt, Kati Andreasson, Robert Fisher (1993)
Mirth, laughter and gelastic seizures.Brain : a journal of neurology, 116 ( Pt 4)
Celio (1993a) Calcium-binding proteins define subpopulations of interneurons in the cingulate cortex
M. Raichle, J. Fiez, T. Videen, A. Macleod, J. Pardo, P. Fox, S. Petersen (1994)
Practice-related changes in human brain functional anatomy during nonmotor learning.Cerebral cortex, 4 1
I. Blümcke, E. Weruaga, S. Kasas, A. Hendrickson, M. Celio (1994)
Discrete reduction patterns of parvalbumin and calbindin D-28k immunoreactivity in the dorsal lateral geniculate nucleus and the striate cortex of adult macaque monkeys after monocular enucleationVisual Neuroscience, 11
M. Celio (1990)
Calbindin D-28k and parvalbumin in the rat nervous systemNeuroscience, 35
Functional imaging studies of the human brain have suggested the involvement of the cingulate gyrus in a wide variety of affective, cognitive, motor, and sensory functions. These studies highlighted the need for detailed anatomic analyses to delineate its many cortical fields more clearly. In the present study, neurofilament protein, and the calcium‐binding proteins parvalbumin, calbindin, and calretinin were used as neurochemical markers to study the differences among areas and subareas in the distributions of particular cell types or neuropil staining patterns. The most rostral parts of the anterior cingulate cortex were marked by a lower density of neurofilament protein‐containing neurons, which were virtually restricted to layers V and VI. Immunoreactive layer III neurons, in contrast, were sparse in the anterior cingulate cortex, and reached maximal densities in the posterior cingulate cortex. These neurons were more prevalent in dorsal than in ventral portions of the gyrus. Parvalbumin‐immunoreactive neurons generally had the same distribution. Calbindin‐ and calretinin‐immunoreactive nonpyramidal neurons had a more uniform distribution along the gyrus. Calbindin‐immunoreactive pyramidal neurons were more abundant anteriorly than posteriorly, and a population of calretinin‐immunoreactive pyramidal‐like neurons in layer V was found largely in the most anterior and ventral portions of the gyrus. Neuropil labeling with parvalbumin and calbindin was most dense in layer III of the anterior cingulate cortex. In addition, parvalbumin‐immunoreactive axonal cartridges were most dense in layer V of area 24a. Calretinin immunoreactivity showed less regional specificity, with the exception of areas 29 and 30. These chemoarchitectonic features may represent cellular reflections of functional specializations in distinct domains of the cingulate cortex. J. Comp. Neurol. 384:597–620, 1997. © 1997 Wiley‐Liss, Inc.
The Journal of Comparative Neurology – Wiley
Published: Nov 11, 1997
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.