Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose) polymerase in a purified system.

Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose) polymerase in a... The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemistry Pubmed

Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose) polymerase in a purified system.

Biochemistry , Volume 43 (1): 7 – May 12, 2004

Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose) polymerase in a purified system.


Abstract

The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage.

Loading next page...
 
/lp/pubmed/analysis-of-nucleotide-sequence-dependent-dna-binding-of-poly-adp-OcRSR0vThM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0006-2960
DOI
10.1021/bi0301800
pmid
14705948

Abstract

The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage.

Journal

BiochemistryPubmed

Published: May 12, 2004

There are no references for this article.