Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation.

Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. Tantalum oxynitride photoanode is fabricated and modified with calcium ferrite to form a heterojunction anode for a photoelectrochemical water splitting cell. The synthesized powders are loaded sequentially to the transparent conducting glass by electrophoretic deposition, which is advantageous to form a uniform layer and a junction structure. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, and impedance spectroscopy analysis are conducted to investigate the structural, morphological, and electrochemical characteristics of the anode. The introduction of CaFe2O4 overlayer onto TaON electrode increases the photocurrent density about five times at 1.23 V vs reversible hydrogen electrode without any co-catalyst. Impedance spectroscopy analysis indicates that the junction formation increased photocurrent density by reducing the resistance to the transport of charge carriers and thereby enhancing the electron-hole separation. This photocurrent generation is a result of the overall water splitting as confirmed by evolution of hydrogen and oxygen in a stoichiometric ratio. From the study of different junction configurations, it is established that the intimate contact between TaON and CaFe2O4 is critical for enhanced performance of the heterojunction anode for photoelectrochemical water oxidation under simulated sun light. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation.

Journal of the American Chemical Society , Volume 135 (14): -5291 – Sep 26, 2013

Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation.


Abstract

Tantalum oxynitride photoanode is fabricated and modified with calcium ferrite to form a heterojunction anode for a photoelectrochemical water splitting cell. The synthesized powders are loaded sequentially to the transparent conducting glass by electrophoretic deposition, which is advantageous to form a uniform layer and a junction structure. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, and impedance spectroscopy analysis are conducted to investigate the structural, morphological, and electrochemical characteristics of the anode. The introduction of CaFe2O4 overlayer onto TaON electrode increases the photocurrent density about five times at 1.23 V vs reversible hydrogen electrode without any co-catalyst. Impedance spectroscopy analysis indicates that the junction formation increased photocurrent density by reducing the resistance to the transport of charge carriers and thereby enhancing the electron-hole separation. This photocurrent generation is a result of the overall water splitting as confirmed by evolution of hydrogen and oxygen in a stoichiometric ratio. From the study of different junction configurations, it is established that the intimate contact between TaON and CaFe2O4 is critical for enhanced performance of the heterojunction anode for photoelectrochemical water oxidation under simulated sun light.

Loading next page...
 
/lp/pubmed/fabrication-of-cafe2o4-taon-heterojunction-photoanode-for-MiQ2OZkFCu

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-7863
DOI
10.1021/ja308723w
pmid
23463951

Abstract

Tantalum oxynitride photoanode is fabricated and modified with calcium ferrite to form a heterojunction anode for a photoelectrochemical water splitting cell. The synthesized powders are loaded sequentially to the transparent conducting glass by electrophoretic deposition, which is advantageous to form a uniform layer and a junction structure. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, and impedance spectroscopy analysis are conducted to investigate the structural, morphological, and electrochemical characteristics of the anode. The introduction of CaFe2O4 overlayer onto TaON electrode increases the photocurrent density about five times at 1.23 V vs reversible hydrogen electrode without any co-catalyst. Impedance spectroscopy analysis indicates that the junction formation increased photocurrent density by reducing the resistance to the transport of charge carriers and thereby enhancing the electron-hole separation. This photocurrent generation is a result of the overall water splitting as confirmed by evolution of hydrogen and oxygen in a stoichiometric ratio. From the study of different junction configurations, it is established that the intimate contact between TaON and CaFe2O4 is critical for enhanced performance of the heterojunction anode for photoelectrochemical water oxidation under simulated sun light.

Journal

Journal of the American Chemical SocietyPubmed

Published: Sep 26, 2013

There are no references for this article.