Access the full text.
Sign up today, get DeepDyve free for 14 days.
Chen Li, Chao‐Nan Xu, Lin Zhang, H. Yamada, Y. Imai, Wen Wang (2008)
Dynamic Visualization of Stress Distribution by Mechanoluminescence ImageKey Engineering Materials, 388
Chao‐Nan Xu, H. Yamada, Xusheng Wang, Xu-Guang Zheng (2004)
Strong elasticoluminescence from monoclinic-structure SrAl2O4Applied Physics Letters, 84
D. Dexter, J. Schulman (1954)
Theory of Concentration Quenching in Inorganic PhosphorsJournal of Chemical Physics, 22
Dong Tu, Chao‐Nan Xu, Y. Fujio, Sunao Kamimura, Y. Sakata, N. Ueno (2014)
Phosphorescence quenching by mechanical stimulus in CaZnOS:CuApplied Physics Letters, 105
C. Duan, A. Delsing, Htjm Hintzen (2009)
Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) PhosphorsChemistry of Materials, 21
A. Stoneham (1981)
Non-radiative transitions in semiconductorsReports on Progress in Physics, 44
Figure 7. Schematic diagram for MQ mechanism in CaZnOS : Cu
Dong Tu, Chao‐Nan Xu, Y. Fujio, Akihito Yoshida (2015)
Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:CuLight: Science & Applications, 4
Buhao Zhang, Xuhui Xu, Qianyue Li, Yumei Wu, J. Qiu, Xue Yu (2014)
Long persistent and optically stimulated luminescence behaviors of calcium aluminates with different trap filling processesJournal of Solid State Chemistry, 217
N. Terasaki, Hongwu Zhang, H. Yamada, Chao‐Nan Xu (2011)
Mechanoluminescent light source for a fluorescent probe molecule.Chemical communications, 47 28
Yuichiro Kawamura, J. Brooks, Julie Brown, H. Sasabe, C. Adachi (2006)
Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film.Physical review letters, 96 1
Jinman Huang, Yi Yang, S. Xue, Bai Yang, Shiyong Liu, Jia-cong Shen (1997)
Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networksApplied Physics Letters, 70
K. Manzoor, S. Vadera, N. Kumar, T. Kutty (2003)
Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogenMaterials Chemistry and Physics, 82
K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo (2005)
First-principles study on copper-substituted lithium borohydride, (Li1−xCux)BH4Journal of Alloys and Compounds, 404
J. Suyver, T. Beek, S. Wuister, J. Kelly, A. Meijerink (2001)
Luminescence of nanocrystalline ZnSe:CuApplied Physics Letters, 79
Yurong Shi, Yan Wen, Meidan Que, G. Zhu, Yuhua Wang (2014)
Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor.Dalton transactions, 43 6
Yufeng Tian, Yongfeng Li, M. He, I. Putra, Haiyang Peng, B. Yao, S. Cheong, Tom Wu (2011)
Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnOApplied Physics Letters, 98
A. Suzuki, S. Shionoya (1971)
Mechanism of the Green-Copper Luminescence in ZnS Crystals. I. Direct Evidence for the Pair Emission MechanismJournal of the Physical Society of Japan, 31
T. Kuo, Wei-Ren Liu, Teng-Ming Chen (2010)
High color rendering white light-emitting-diode illuminator using the red-emitting Eu(2+)-activated CaZnOS phosphors excited by blue LED.Optics express, 18 8
W. Peng, G. Cong, S. Qu, Z. Wang (2006)
Synthesis and photoluminescence of ZnS:Cu nanoparticlesOptical Materials, 29
Chao‐Nan Xu, Tadahiko Watanabe, M. Akiyama, Xu-Guang Zheng (1999)
Direct view of stress distribution in solid by mechanoluminescenceApplied Physics Letters, 74
B. Chandra, M. Elyas, K. Shrivastava, R. Verma (1980)
Mechanoluminescence and piezoelectric behaviour of monoclinic crystalsSolid State Communications, 36
Chao‐Nan Xu, Tadahiko Watanabe, M. Akiyama, Xu-Guang Zheng (1999)
Artificial skin to sense mechanical stress by visible light emissionApplied Physics Letters, 74
B. Chandra (1984)
Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystalsJournal of Physics D, 17
O. Rubel, S. Baranovskii, K. Hantke, B. Kunert, W. Rühle, P. Thomas, K. Volz, W. Stolz (2006)
Model of temperature quenching of photoluminescence in disordered semiconductors and comparison to experimentPhysical Review B, 73
N. Garces, Lijun Wang, L. Bai, N. Giles, L. Halliburton, G. Cantwell (2002)
Role of copper in the green luminescence from ZnO crystalsApplied Physics Letters, 81
Woan Yang, Teng-Ming Chen (2006)
White-light generation and energy transfer in SrZn2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodesApplied Physics Letters, 88
Chao‐Nan Xu, H. Matsui, Yun Liu, Xu-Guang Zheng, Long-Yuan Li (2001)
Novel approach to dynamic imaging of stress distribution with piezoluminescenceFerroelectrics, 263
Jun-Cheng Zhang, Chao‐Nan Xu, Sunao Kamimura, Y. Terasawa, H. Yamada, Xusheng Wang (2013)
An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses.Optics express, 21 11
Chenshu Li, Chao‐Nan Xu, Lin Zhang, H. Yamada, Y. Imai (2008)
Dynamic visualization of stress distribution on metal by mechanoluminescence imagesJournal of Visualization, 11
S. Petrova, V. Mar’evich, R. Zakharov, E. Selivanov, V. Chumarev, L. Udoeva (2003)
Crystal Structure of Zinc Calcium OxysulfideDoklady Chemistry, 393
Yujuan Xia, Fuqiang Huang, Wendeng Wang, Anbao Wang, Jianlin Shi (2007)
Luminescence properties of Cu-activated BaZnOS phosphorSolid State Sciences, 9
Timothy Sambrook, C. Smura, Simon Clarke, K. Ok, P. Halasyamani (2007)
Structure and physical properties of the polar oxysulfide CaZnOS.Inorganic chemistry, 46 7
B. Chandra, V. Chandra, P. Jha (2015)
Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materialsPhysica B-condensed Matter, 461
This article reports a new class of mechano-optical materials CaZnOS : Cu with a non-centrosymmetric layered structure. The mechano-optical conversion is strongly dependent on the Cu concentration in CaZnOS. The mechano-optical conversion of CaZnOS : Cu changes from initial mechanoluminescence to mechanical quenching (MQ) with increasing Cu concentration, and reaches a maximum MQ intensity at 0.01%. It is proposed that MQ arises from nonradiative recombination, caused by electron transfer from trap levels to nonradiative centers as a result of the mechanical load.
Journal of Physics D: Applied Physics – IOP Publishing
Published: Dec 2, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.