Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Bankier, J. Brady, N. Myers (1991)
Epidemiology and genetics
R. Griggs, V. Askanas, S. Dimauro, A. Engel, G. Karpati, J. Mendell, L. Rowland (1995)
Inclusion body myositis and myopathiesAnnals of Neurology, 38
Z. Argov, I. Eisenberg, S. Mitrani-Rosenbaum (1998)
Genetics of inclusion body myopathies.Current opinion in rheumatology, 10 6
J. Claverie (2001)
What If There Are Only 30,000 Human Genes?Science, 291
S. Salzberg, O. White, J. Peterson, J. Eisen (2001)
Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss?Science, 292
S Hinderlich, R Stasche, R Zeitler, W Reutter (1997)
A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinaseJ. Biol. Chem., 272
T. Ikeuchi, T. Asaka, M. Saito, Hajime Tanaka, S. Higuchi, Keiko Tanaka, K. Saida, E. Uyama, Hidenobu Mizusawa, N. Fukuhara, I. Nonaka, M. Takamori, S. Tsuji (1997)
Gene locus for autosomal recessive distal myopathy with rimmed vacuoles maps to chromosome 9Annals of Neurology, 41
R. Seppala, R. Seppala, V. Lehto, W. Gahl (1999)
Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme.American journal of human genetics, 64 6
I. Eisenberg, C. Thiel, T. Levi, E. Tiram, Z. Argov, M. Sadeh, C. Jackson, L. Thierfelder, S. Mitrani-Rosenbaum (1999)
Fine-structure mapping of the hereditary inclusion body myopathy locus.Genomics, 55 1
M Sadeh, Z Argov (1997)
Inclusion Body Myositis and Myopathies: Jews of Persian Origin: Clinical and Laboratory Data
I. Eisenberg, H. Hochner, M. Shemesh, T. Levi, T. Potikha, M. Sadeh, Z. Argov, C. Jackson, S. Mitrani-Rosenbaum (2001)
Physical and transcriptional map of the hereditary inclusion body myopathy locus on chromosome 9p12-p13European Journal of Human Genetics, 9
R Stasche (1997)
A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinaseJ. Biol. Chem., 272
O. Keppler, S. Hinderlich, J. Langner, R. Schwartz-Albiez, W. Reutter, M. Pawlita (1999)
UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation.Science, 284 5418
S. Hinderlich, R. Stäsche, R. Zeitler, W. Reutter (1997)
A Bifunctional Enzyme Catalyzes the First Two Steps in N-Acetylneuraminic Acid Biosynthesis of Rat LiverThe Journal of Biological Chemistry, 272
JM Claverie (2001)
Gene number. What if there are only 30,000 human genes?Science, 291
C. Takahashi, C. Takahashi, Z. Sheng, T. Horan, H. Kitayama, M. Maki, K. Hitomi, Y. Kitaura, S. Takai, R. Sasahara, A. Horimoto, Y. Ikawa, B. Ratzkin, T. Arakawa, M. Noda (1998)
Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK.Proceedings of the National Academy of Sciences of the United States of America, 95 22
S. Ponnambalam, A. Jackson, M. Lebeau, D. Pravtcheva, F. Ruddle, C. Alibert, P. Parham (1994)
Chromosomal location and some structural features of human clathrin light-chain genes (CLTA and CLTB).Genomics, 24 3
D. Higgins, J. Thompson, T. Gibson (1996)
Using CLUSTAL for multiple sequence alignments.Methods in enzymology, 266
S. Altschul, Thomas Madden, A. Schäffer, Jinghui Zhang, Zheng Zhang, W. Miller, D. Lipman (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic acids research, 25 17
V. Askanas, W. Engel (1998)
Sporadic inclusion-body myositis and hereditary inclusion-body myopathies: current concepts of diagnosis and pathogenesis.Current opinion in rheumatology, 10 6
Z. Argov, R. Yarom (1984)
“Rimmed vacuole myopathy” sparing the quadriceps A unique disorder in iranian jewsJournal of the Neurological Sciences, 64
R. Humbel, M. Collart (1975)
Oligosaccharides in urine of patients with glycoprotein storage diseases. I. Rapid detection by thin-layer chromatography.Clinica chimica acta; international journal of clinical chemistry, 60 2
E. Lander, L. Linton, B. Birren, C. Nusbaum, M. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. Fitzhugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. Levine, P. McEwan, K. McKernan, J. Meldrim, J. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, Y. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. Waterston, R. Wilson, L. Hillier, J. McPherson, M. Marra, E. Mardis, L. Fulton, A. Chinwalla, K. Pepin, W. Gish, S. Chissoe, M. Wendl, K. Delehaunty, T. Miner, A. Delehaunty, J. Kramer, L. Cook, R. Fulton, D. Johnson, P. Minx, S. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. Gibbs, D. Muzny, S. Scherer, J. Bouck, E. Sodergren, K. Worley, C. Rives, J. Gorrell, M. Metzker, S. Naylor, R. Kucherlapati, D. Nelson, G. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, É. Pelletier, C. Robert, P. Wincker, D. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. Davis, N. Federspiel, A. Abola, M. Proctor, R. Myers, J. Schmutz, M. Dickson, J. Grimwood, D. Cox, M. Olson, R. Kaul, N. Shimizu, K. Kawasaki, S. Minoshima, G. Evans, M. Athanasiou, R. Schultz, B. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W. McCombie, M. Bastide, N. Dedhia, H. Blöcker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. Brown, C. Burge, L. Cerutti, H. Chen, D. Church, M. Clamp, R. Copley, T. Doerks, S. Eddy, E. Eichler, T. Furey, J. Galagan, J. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang, L. Johnson, T. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. Kent, P. Kitts, E. Koonin, I. Korf, D. Kulp, D. Lancet, Gwênlyn Glusman, T. Lowe, A. McLysaght, T. Mikkelsen, J. Moran, N. Mulder, V. Pollara, C. Ponting, G. Schuler, J. Schultz, G. Slater, A. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. Wolf, K. Wolfe, S. Yang, R. Yeh, F. Collins, M. Guyer, J. Peterson, A. Felsenfeld, K. Wetterstrand, A. Patrinos, M. Morgan, P. Jong, J. Catanese, K. Osoegawa, H. Shizuya, S. Choi, Y. Chen, Vacslav Glukhov (2001)
Initial sequencing and analysis of the human genome.Nature, 409 6822
S. Little (1995)
Amplification‐Refractory Mutation System (ARMS) Analysis of Point MutationsCurrent Protocols in Human Genetics, 7
J. Millichap (1998)
Hereditary Inclusion Body MyopathyPediatric Neurology Briefs, 12
N. Dracopoli (1994)
Current protocols in human genetics
I. Nonaka, N. Sunohara, S. Ishiura, E. Satoyoshi (1981)
Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formationJournal of the Neurological Sciences, 51
S. Mitrani-Rosenbaum, S. Mitrani-Rosenbaum, Z. Argov, A. Blumenfeld, C. Seidman, J. Seidman (1996)
Hereditary inclusion body myopathy maps to chromosome 9p1-q1.Human molecular genetics, 5 1
R Stasche (1997)
10.1074/jbc.272.39.24319J. Biol. Chem., 272
K. Effertz, S. Hinderlich, W. Reutter (1999)
Selective Loss of either the Epimerase or Kinase Activity of UDP-N-acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase due to Site-directed Mutagenesis Based on Sequence Alignments*The Journal of Biological Chemistry, 274
Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions 1 . The autosomal recessive form described in Jews of Persian descent 2 is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps 3 . This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews 4 . We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12–13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12–13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.
Nature Genetics – Springer Journals
Published: Aug 27, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.